[e16e8f2] | 1 | /* SHA256-based Unix crypt implementation. |
---|
| 2 | Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>. */ |
---|
| 3 | |
---|
| 4 | #include <alloca.h> |
---|
| 5 | #include <endian.h> |
---|
| 6 | #include <errno.h> |
---|
| 7 | #include <limits.h> |
---|
| 8 | #include <stdint.h> |
---|
| 9 | #include <stdbool.h> |
---|
| 10 | #include <stdio.h> |
---|
| 11 | #include <stdlib.h> |
---|
| 12 | #include <string.h> |
---|
| 13 | #include <minmax.h> |
---|
| 14 | #include <sys/types.h> |
---|
| 15 | |
---|
| 16 | #include "xcrypt.h" |
---|
| 17 | |
---|
| 18 | #define MIN(x,y) min(x,y) |
---|
| 19 | #define MAX(x,y) max(x,y) |
---|
| 20 | |
---|
| 21 | /* Structure to save state of computation between the single steps. */ |
---|
| 22 | struct sha256_ctx { |
---|
| 23 | uint32_t H[8]; |
---|
| 24 | |
---|
| 25 | uint32_t total[2]; |
---|
| 26 | uint32_t buflen; |
---|
| 27 | char buffer[128]; /* NB: always correctly aligned for uint32_t. */ |
---|
| 28 | }; |
---|
| 29 | |
---|
| 30 | #if __BYTE_ORDER == __LITTLE_ENDIAN |
---|
| 31 | # define SWAP(n) \ |
---|
| 32 | (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) |
---|
| 33 | #else |
---|
| 34 | # define SWAP(n) (n) |
---|
| 35 | #endif |
---|
| 36 | |
---|
| 37 | /* This array contains the bytes used to pad the buffer to the next |
---|
| 38 | 64-byte boundary. (FIPS 180-2:5.1.1) */ |
---|
| 39 | static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; |
---|
| 40 | |
---|
| 41 | /* Constants for SHA256 from FIPS 180-2:4.2.2. */ |
---|
| 42 | static const uint32_t K[64] = { |
---|
| 43 | 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, |
---|
| 44 | 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
---|
| 45 | 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, |
---|
| 46 | 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
---|
| 47 | 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, |
---|
| 48 | 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
---|
| 49 | 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, |
---|
| 50 | 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
---|
| 51 | 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, |
---|
| 52 | 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
---|
| 53 | 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, |
---|
| 54 | 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
---|
| 55 | 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, |
---|
| 56 | 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
---|
| 57 | 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, |
---|
| 58 | 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
---|
| 59 | }; |
---|
| 60 | |
---|
| 61 | /* Process LEN bytes of BUFFER, accumulating context into CTX. |
---|
| 62 | It is assumed that LEN % 64 == 0. */ |
---|
| 63 | static void |
---|
| 64 | sha256_process_block(const void *buffer, size_t len, struct sha256_ctx *ctx) |
---|
| 65 | { |
---|
| 66 | unsigned int t; |
---|
| 67 | const uint32_t *words = buffer; |
---|
| 68 | size_t nwords = len / sizeof(uint32_t); |
---|
| 69 | uint32_t a = ctx->H[0]; |
---|
| 70 | uint32_t b = ctx->H[1]; |
---|
| 71 | uint32_t c = ctx->H[2]; |
---|
| 72 | uint32_t d = ctx->H[3]; |
---|
| 73 | uint32_t e = ctx->H[4]; |
---|
| 74 | uint32_t f = ctx->H[5]; |
---|
| 75 | uint32_t g = ctx->H[6]; |
---|
| 76 | uint32_t h = ctx->H[7]; |
---|
| 77 | |
---|
| 78 | /* First increment the byte count. FIPS 180-2 specifies the possible |
---|
| 79 | length of the file up to 2^64 bits. Here we only compute the |
---|
| 80 | number of bytes. Do a double word increment. */ |
---|
| 81 | ctx->total[0] += len; |
---|
| 82 | if (ctx->total[0] < len) |
---|
| 83 | ++ctx->total[1]; |
---|
| 84 | |
---|
| 85 | /* Process all bytes in the buffer with 64 bytes in each round of |
---|
| 86 | the loop. */ |
---|
| 87 | while (nwords > 0) { |
---|
| 88 | uint32_t W[64]; |
---|
| 89 | uint32_t a_save = a; |
---|
| 90 | uint32_t b_save = b; |
---|
| 91 | uint32_t c_save = c; |
---|
| 92 | uint32_t d_save = d; |
---|
| 93 | uint32_t e_save = e; |
---|
| 94 | uint32_t f_save = f; |
---|
| 95 | uint32_t g_save = g; |
---|
| 96 | uint32_t h_save = h; |
---|
| 97 | |
---|
| 98 | /* Operators defined in FIPS 180-2:4.1.2. */ |
---|
| 99 | #define Ch(x, y, z) ((x & y) ^ (~x & z)) |
---|
| 100 | #define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) |
---|
| 101 | #define S0(x) (CYCLIC (x, 2) ^ CYCLIC (x, 13) ^ CYCLIC (x, 22)) |
---|
| 102 | #define S1(x) (CYCLIC (x, 6) ^ CYCLIC (x, 11) ^ CYCLIC (x, 25)) |
---|
| 103 | #define R0(x) (CYCLIC (x, 7) ^ CYCLIC (x, 18) ^ (x >> 3)) |
---|
| 104 | #define R1(x) (CYCLIC (x, 17) ^ CYCLIC (x, 19) ^ (x >> 10)) |
---|
| 105 | |
---|
| 106 | /* It is unfortunate that C does not provide an operator for |
---|
| 107 | cyclic rotation. Hope the C compiler is smart enough. */ |
---|
| 108 | #define CYCLIC(w, s) ((w >> s) | (w << (32 - s))) |
---|
| 109 | |
---|
| 110 | /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */ |
---|
| 111 | for (t = 0; t < 16; ++t) { |
---|
| 112 | W[t] = SWAP(*words); |
---|
| 113 | ++words; |
---|
| 114 | } |
---|
| 115 | for (t = 16; t < 64; ++t) |
---|
| 116 | W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16]; |
---|
| 117 | |
---|
| 118 | /* The actual computation according to FIPS 180-2:6.2.2 step 3. */ |
---|
| 119 | for (t = 0; t < 64; ++t) { |
---|
| 120 | uint32_t T1 = h + S1(e) + Ch(e, f, g) + K[t] + W[t]; |
---|
| 121 | uint32_t T2 = S0(a) + Maj(a, b, c); |
---|
| 122 | h = g; |
---|
| 123 | g = f; |
---|
| 124 | f = e; |
---|
| 125 | e = d + T1; |
---|
| 126 | d = c; |
---|
| 127 | c = b; |
---|
| 128 | b = a; |
---|
| 129 | a = T1 + T2; |
---|
| 130 | } |
---|
| 131 | |
---|
| 132 | /* Add the starting values of the context according to FIPS 180-2:6.2.2 |
---|
| 133 | step 4. */ |
---|
| 134 | a += a_save; |
---|
| 135 | b += b_save; |
---|
| 136 | c += c_save; |
---|
| 137 | d += d_save; |
---|
| 138 | e += e_save; |
---|
| 139 | f += f_save; |
---|
| 140 | g += g_save; |
---|
| 141 | h += h_save; |
---|
| 142 | |
---|
| 143 | /* Prepare for the next round. */ |
---|
| 144 | nwords -= 16; |
---|
| 145 | } |
---|
| 146 | |
---|
| 147 | /* Put checksum in context given as argument. */ |
---|
| 148 | ctx->H[0] = a; |
---|
| 149 | ctx->H[1] = b; |
---|
| 150 | ctx->H[2] = c; |
---|
| 151 | ctx->H[3] = d; |
---|
| 152 | ctx->H[4] = e; |
---|
| 153 | ctx->H[5] = f; |
---|
| 154 | ctx->H[6] = g; |
---|
| 155 | ctx->H[7] = h; |
---|
| 156 | } |
---|
| 157 | |
---|
| 158 | /* Initialize structure containing state of computation. |
---|
| 159 | (FIPS 180-2:5.3.2) */ |
---|
| 160 | static void sha256_init_ctx(struct sha256_ctx *ctx) |
---|
| 161 | { |
---|
| 162 | ctx->H[0] = 0x6a09e667; |
---|
| 163 | ctx->H[1] = 0xbb67ae85; |
---|
| 164 | ctx->H[2] = 0x3c6ef372; |
---|
| 165 | ctx->H[3] = 0xa54ff53a; |
---|
| 166 | ctx->H[4] = 0x510e527f; |
---|
| 167 | ctx->H[5] = 0x9b05688c; |
---|
| 168 | ctx->H[6] = 0x1f83d9ab; |
---|
| 169 | ctx->H[7] = 0x5be0cd19; |
---|
| 170 | |
---|
| 171 | ctx->total[0] = ctx->total[1] = 0; |
---|
| 172 | ctx->buflen = 0; |
---|
| 173 | } |
---|
| 174 | |
---|
| 175 | /* Process the remaining bytes in the internal buffer and the usual |
---|
| 176 | prolog according to the standard and write the result to RESBUF. |
---|
| 177 | |
---|
| 178 | IMPORTANT: On some systems it is required that RESBUF is correctly |
---|
| 179 | aligned for a 32 bits value. */ |
---|
| 180 | static void *sha256_finish_ctx(struct sha256_ctx *ctx, void *resbuf) |
---|
| 181 | { |
---|
| 182 | unsigned int i; |
---|
| 183 | /* Take yet unprocessed bytes into account. */ |
---|
| 184 | uint32_t bytes = ctx->buflen; |
---|
| 185 | size_t pad; |
---|
| 186 | |
---|
| 187 | /* Now count remaining bytes. */ |
---|
| 188 | ctx->total[0] += bytes; |
---|
| 189 | if (ctx->total[0] < bytes) |
---|
| 190 | ++ctx->total[1]; |
---|
| 191 | |
---|
| 192 | pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes; |
---|
| 193 | memcpy(&ctx->buffer[bytes], fillbuf, pad); |
---|
| 194 | |
---|
| 195 | /* Put the 64-bit file length in *bits* at the end of the buffer. */ |
---|
| 196 | *(uint32_t *) & ctx->buffer[bytes + pad + 4] = SWAP(ctx->total[0] << 3); |
---|
| 197 | *(uint32_t *) & ctx->buffer[bytes + pad] = SWAP((ctx->total[1] << 3) | |
---|
| 198 | (ctx->total[0] >> 29)); |
---|
| 199 | |
---|
| 200 | /* Process last bytes. */ |
---|
| 201 | sha256_process_block(ctx->buffer, bytes + pad + 8, ctx); |
---|
| 202 | |
---|
| 203 | /* Put result from CTX in first 32 bytes following RESBUF. */ |
---|
| 204 | for (i = 0; i < 8; ++i) |
---|
| 205 | ((uint32_t *) resbuf)[i] = SWAP(ctx->H[i]); |
---|
| 206 | |
---|
| 207 | return resbuf; |
---|
| 208 | } |
---|
| 209 | |
---|
| 210 | static void |
---|
| 211 | sha256_process_bytes(const void *buffer, size_t len, struct sha256_ctx *ctx) |
---|
| 212 | { |
---|
| 213 | /* When we already have some bits in our internal buffer concatenate |
---|
| 214 | both inputs first. */ |
---|
| 215 | if (ctx->buflen != 0) { |
---|
| 216 | size_t left_over = ctx->buflen; |
---|
| 217 | size_t add = 128 - left_over > len ? len : 128 - left_over; |
---|
| 218 | |
---|
| 219 | memcpy(&ctx->buffer[left_over], buffer, add); |
---|
| 220 | ctx->buflen += add; |
---|
| 221 | |
---|
| 222 | if (ctx->buflen > 64) { |
---|
| 223 | sha256_process_block(ctx->buffer, ctx->buflen & ~63, ctx); |
---|
| 224 | |
---|
| 225 | ctx->buflen &= 63; |
---|
| 226 | /* The regions in the following copy operation cannot overlap. */ |
---|
| 227 | memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~63], |
---|
| 228 | ctx->buflen); |
---|
| 229 | } |
---|
| 230 | |
---|
| 231 | buffer = (const char *)buffer + add; |
---|
| 232 | len -= add; |
---|
| 233 | } |
---|
| 234 | |
---|
| 235 | /* Process available complete blocks. */ |
---|
| 236 | if (len >= 64) { |
---|
| 237 | /* To check alignment gcc has an appropriate operator. Other |
---|
| 238 | compilers don't. */ |
---|
| 239 | #if __GNUC__ >= 2 |
---|
| 240 | # define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0) |
---|
| 241 | #else |
---|
| 242 | # define UNALIGNED_P(p) (((uintptr_t) p) % sizeof (uint32_t) != 0) |
---|
| 243 | #endif |
---|
| 244 | if (UNALIGNED_P(buffer)) |
---|
| 245 | while (len > 64) { |
---|
| 246 | sha256_process_block(memcpy(ctx->buffer, buffer, 64), 64, ctx); |
---|
| 247 | buffer = (const char *)buffer + 64; |
---|
| 248 | len -= 64; |
---|
| 249 | } else { |
---|
| 250 | sha256_process_block(buffer, len & ~63, ctx); |
---|
| 251 | buffer = (const char *)buffer + (len & ~63); |
---|
| 252 | len &= 63; |
---|
| 253 | } |
---|
| 254 | } |
---|
| 255 | |
---|
| 256 | /* Move remaining bytes into internal buffer. */ |
---|
| 257 | if (len > 0) { |
---|
| 258 | size_t left_over = ctx->buflen; |
---|
| 259 | |
---|
| 260 | memcpy(&ctx->buffer[left_over], buffer, len); |
---|
| 261 | left_over += len; |
---|
| 262 | if (left_over >= 64) { |
---|
| 263 | sha256_process_block(ctx->buffer, 64, ctx); |
---|
| 264 | left_over -= 64; |
---|
| 265 | memcpy(ctx->buffer, &ctx->buffer[64], left_over); |
---|
| 266 | } |
---|
| 267 | ctx->buflen = left_over; |
---|
| 268 | } |
---|
| 269 | } |
---|
| 270 | |
---|
| 271 | /* Define our magic string to mark salt for SHA256 "encryption" |
---|
| 272 | replacement. */ |
---|
| 273 | static const char sha256_salt_prefix[] = "$5$"; |
---|
| 274 | |
---|
| 275 | /* Prefix for optional rounds specification. */ |
---|
| 276 | static const char sha256_rounds_prefix[] = "rounds="; |
---|
| 277 | |
---|
| 278 | /* Maximum salt string length. */ |
---|
| 279 | #define SALT_LEN_MAX 16U |
---|
| 280 | /* Default number of rounds if not explicitly specified. */ |
---|
| 281 | #define ROUNDS_DEFAULT 5000UL |
---|
| 282 | /* Minimum number of rounds. */ |
---|
| 283 | #define ROUNDS_MIN 1000UL |
---|
| 284 | /* Maximum number of rounds. */ |
---|
| 285 | #define ROUNDS_MAX 999999999UL |
---|
| 286 | |
---|
| 287 | /* Table with characters for base64 transformation. */ |
---|
| 288 | static const char b64t[64] = |
---|
| 289 | "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; |
---|
| 290 | |
---|
| 291 | static char *sha256_crypt_r(const char *key, const char *salt, char *buffer, |
---|
| 292 | int buflen) |
---|
| 293 | { |
---|
| 294 | unsigned char alt_result[32] |
---|
| 295 | __attribute__ ((__aligned__(__alignof__(uint32_t)))); |
---|
| 296 | unsigned char temp_result[32] |
---|
| 297 | __attribute__ ((__aligned__(__alignof__(uint32_t)))); |
---|
| 298 | struct sha256_ctx ctx; |
---|
| 299 | struct sha256_ctx alt_ctx; |
---|
| 300 | size_t salt_len; |
---|
| 301 | size_t key_len; |
---|
| 302 | size_t cnt; |
---|
| 303 | char *cp; |
---|
| 304 | char *copied_key = NULL; |
---|
| 305 | char *copied_salt = NULL; |
---|
| 306 | char *p_bytes; |
---|
| 307 | char *s_bytes; |
---|
| 308 | /* Default number of rounds. */ |
---|
| 309 | size_t rounds = ROUNDS_DEFAULT; |
---|
| 310 | bool rounds_custom = false; |
---|
| 311 | |
---|
| 312 | /* Find beginning of salt string. The prefix should normally always |
---|
| 313 | be present. Just in case it is not. */ |
---|
| 314 | if (strncmp(sha256_salt_prefix, salt, sizeof(sha256_salt_prefix) - 1) == 0) |
---|
| 315 | /* Skip salt prefix. */ |
---|
| 316 | salt += sizeof(sha256_salt_prefix) - 1; |
---|
| 317 | |
---|
| 318 | if (strncmp(salt, sha256_rounds_prefix, sizeof(sha256_rounds_prefix) - 1) |
---|
| 319 | == 0) { |
---|
| 320 | const char *num = salt + sizeof(sha256_rounds_prefix) - 1; |
---|
| 321 | char *endp; |
---|
| 322 | unsigned long int srounds = strtoul(num, &endp, 10); |
---|
| 323 | if (*endp == '$') { |
---|
| 324 | salt = endp + 1; |
---|
| 325 | rounds = MAX(ROUNDS_MIN, MIN(srounds, ROUNDS_MAX)); |
---|
| 326 | rounds_custom = true; |
---|
| 327 | } |
---|
| 328 | } |
---|
| 329 | |
---|
| 330 | salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX); |
---|
| 331 | key_len = strlen(key); |
---|
| 332 | |
---|
| 333 | if ((key - (char *)0) % __alignof__(uint32_t) != 0) { |
---|
| 334 | char *tmp = (char *)alloca(key_len + __alignof__(uint32_t)); |
---|
| 335 | key = copied_key = memcpy(tmp + __alignof__(uint32_t) |
---|
| 336 | - (tmp - (char *)0) % __alignof__(uint32_t), |
---|
| 337 | key, key_len); |
---|
| 338 | } |
---|
| 339 | |
---|
| 340 | if ((salt - (char *)0) % __alignof__(uint32_t) != 0) { |
---|
| 341 | char *tmp = (char *)alloca(salt_len + __alignof__(uint32_t)); |
---|
| 342 | salt = copied_salt = memcpy(tmp + __alignof__(uint32_t) |
---|
| 343 | - (tmp - (char *)0) % __alignof__(uint32_t), |
---|
| 344 | salt, salt_len); |
---|
| 345 | } |
---|
| 346 | |
---|
| 347 | /* Prepare for the real work. */ |
---|
| 348 | sha256_init_ctx(&ctx); |
---|
| 349 | |
---|
| 350 | /* Add the key string. */ |
---|
| 351 | sha256_process_bytes(key, key_len, &ctx); |
---|
| 352 | |
---|
| 353 | /* The last part is the salt string. This must be at most 8 |
---|
| 354 | characters and it ends at the first `$' character (for |
---|
| 355 | compatibility with existing implementations). */ |
---|
| 356 | sha256_process_bytes(salt, salt_len, &ctx); |
---|
| 357 | |
---|
| 358 | /* Compute alternate SHA256 sum with input KEY, SALT, and KEY. The |
---|
| 359 | final result will be added to the first context. */ |
---|
| 360 | sha256_init_ctx(&alt_ctx); |
---|
| 361 | |
---|
| 362 | /* Add key. */ |
---|
| 363 | sha256_process_bytes(key, key_len, &alt_ctx); |
---|
| 364 | |
---|
| 365 | /* Add salt. */ |
---|
| 366 | sha256_process_bytes(salt, salt_len, &alt_ctx); |
---|
| 367 | |
---|
| 368 | /* Add key again. */ |
---|
| 369 | sha256_process_bytes(key, key_len, &alt_ctx); |
---|
| 370 | |
---|
| 371 | /* Now get result of this (32 bytes) and add it to the other |
---|
| 372 | context. */ |
---|
| 373 | sha256_finish_ctx(&alt_ctx, alt_result); |
---|
| 374 | |
---|
| 375 | /* Add for any character in the key one byte of the alternate sum. */ |
---|
| 376 | for (cnt = key_len; cnt > 32; cnt -= 32) |
---|
| 377 | sha256_process_bytes(alt_result, 32, &ctx); |
---|
| 378 | sha256_process_bytes(alt_result, cnt, &ctx); |
---|
| 379 | |
---|
| 380 | /* Take the binary representation of the length of the key and for every |
---|
| 381 | 1 add the alternate sum, for every 0 the key. */ |
---|
| 382 | for (cnt = key_len; cnt; cnt >>= 1) |
---|
| 383 | if ((cnt & 1) != 0) |
---|
| 384 | sha256_process_bytes(alt_result, 32, &ctx); |
---|
| 385 | else |
---|
| 386 | sha256_process_bytes(key, key_len, &ctx); |
---|
| 387 | |
---|
| 388 | /* Create intermediate result. */ |
---|
| 389 | sha256_finish_ctx(&ctx, alt_result); |
---|
| 390 | |
---|
| 391 | /* Start computation of P byte sequence. */ |
---|
| 392 | sha256_init_ctx(&alt_ctx); |
---|
| 393 | |
---|
| 394 | /* For every character in the password add the entire password. */ |
---|
| 395 | for (cnt = 0; cnt < key_len; ++cnt) |
---|
| 396 | sha256_process_bytes(key, key_len, &alt_ctx); |
---|
| 397 | |
---|
| 398 | /* Finish the digest. */ |
---|
| 399 | sha256_finish_ctx(&alt_ctx, temp_result); |
---|
| 400 | |
---|
| 401 | /* Create byte sequence P. */ |
---|
| 402 | cp = p_bytes = alloca(key_len); |
---|
| 403 | for (cnt = key_len; cnt >= 32; cnt -= 32) |
---|
| 404 | cp = mempcpy(cp, temp_result, 32); |
---|
| 405 | memcpy(cp, temp_result, cnt); |
---|
| 406 | |
---|
| 407 | /* Start computation of S byte sequence. */ |
---|
| 408 | sha256_init_ctx(&alt_ctx); |
---|
| 409 | |
---|
| 410 | /* For every character in the password add the entire password. */ |
---|
| 411 | for (cnt = 0; cnt < (size_t)16 + alt_result[0]; ++cnt) |
---|
| 412 | sha256_process_bytes(salt, salt_len, &alt_ctx); |
---|
| 413 | |
---|
| 414 | /* Finish the digest. */ |
---|
| 415 | sha256_finish_ctx(&alt_ctx, temp_result); |
---|
| 416 | |
---|
| 417 | /* Create byte sequence S. */ |
---|
| 418 | cp = s_bytes = alloca(salt_len); |
---|
| 419 | for (cnt = salt_len; cnt >= 32; cnt -= 32) |
---|
| 420 | cp = mempcpy(cp, temp_result, 32); |
---|
| 421 | memcpy(cp, temp_result, cnt); |
---|
| 422 | |
---|
| 423 | /* Repeatedly run the collected hash value through SHA256 to burn |
---|
| 424 | CPU cycles. */ |
---|
| 425 | for (cnt = 0; cnt < rounds; ++cnt) { |
---|
| 426 | /* New context. */ |
---|
| 427 | sha256_init_ctx(&ctx); |
---|
| 428 | |
---|
| 429 | /* Add key or last result. */ |
---|
| 430 | if ((cnt & 1) != 0) |
---|
| 431 | sha256_process_bytes(p_bytes, key_len, &ctx); |
---|
| 432 | else |
---|
| 433 | sha256_process_bytes(alt_result, 32, &ctx); |
---|
| 434 | |
---|
| 435 | /* Add salt for numbers not divisible by 3. */ |
---|
| 436 | if (cnt % 3 != 0) |
---|
| 437 | sha256_process_bytes(s_bytes, salt_len, &ctx); |
---|
| 438 | |
---|
| 439 | /* Add key for numbers not divisible by 7. */ |
---|
| 440 | if (cnt % 7 != 0) |
---|
| 441 | sha256_process_bytes(p_bytes, key_len, &ctx); |
---|
| 442 | |
---|
| 443 | /* Add key or last result. */ |
---|
| 444 | if ((cnt & 1) != 0) |
---|
| 445 | sha256_process_bytes(alt_result, 32, &ctx); |
---|
| 446 | else |
---|
| 447 | sha256_process_bytes(p_bytes, key_len, &ctx); |
---|
| 448 | |
---|
| 449 | /* Create intermediate result. */ |
---|
| 450 | sha256_finish_ctx(&ctx, alt_result); |
---|
| 451 | } |
---|
| 452 | |
---|
| 453 | /* Now we can construct the result string. It consists of three |
---|
| 454 | parts. */ |
---|
| 455 | cp = stpncpy(buffer, sha256_salt_prefix, MAX(0, buflen)); |
---|
| 456 | buflen -= sizeof(sha256_salt_prefix) - 1; |
---|
| 457 | |
---|
| 458 | if (rounds_custom) { |
---|
| 459 | int n = snprintf(cp, MAX(0, buflen), "%s%zu$", |
---|
| 460 | sha256_rounds_prefix, rounds); |
---|
| 461 | cp += n; |
---|
| 462 | buflen -= n; |
---|
| 463 | } |
---|
| 464 | |
---|
| 465 | cp = stpncpy(cp, salt, MIN((size_t) MAX(0, buflen), salt_len)); |
---|
| 466 | buflen -= MIN((size_t) MAX(0, buflen), salt_len); |
---|
| 467 | |
---|
| 468 | if (buflen > 0) { |
---|
| 469 | *cp++ = '$'; |
---|
| 470 | --buflen; |
---|
| 471 | } |
---|
| 472 | #define b64_from_24bit(B2, B1, B0, N) \ |
---|
| 473 | do { \ |
---|
| 474 | unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \ |
---|
| 475 | int n = (N); \ |
---|
| 476 | while (n-- > 0 && buflen > 0) \ |
---|
| 477 | { \ |
---|
| 478 | *cp++ = b64t[w & 0x3f]; \ |
---|
| 479 | --buflen; \ |
---|
| 480 | w >>= 6; \ |
---|
| 481 | } \ |
---|
| 482 | } while (0) |
---|
| 483 | |
---|
| 484 | b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4); |
---|
| 485 | b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4); |
---|
| 486 | b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4); |
---|
| 487 | b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4); |
---|
| 488 | b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4); |
---|
| 489 | b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4); |
---|
| 490 | b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4); |
---|
| 491 | b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4); |
---|
| 492 | b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4); |
---|
| 493 | b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4); |
---|
| 494 | b64_from_24bit(0, alt_result[31], alt_result[30], 3); |
---|
| 495 | if (buflen <= 0) { |
---|
| 496 | errno = ERANGE; |
---|
| 497 | buffer = NULL; |
---|
| 498 | } else |
---|
| 499 | *cp = '\0'; /* Terminate the string. */ |
---|
| 500 | |
---|
| 501 | /* Clear the buffer for the intermediate result so that people |
---|
| 502 | attaching to processes or reading core dumps cannot get any |
---|
| 503 | information. We do it in this way to clear correct_words[] |
---|
| 504 | inside the SHA256 implementation as well. */ |
---|
| 505 | sha256_init_ctx(&ctx); |
---|
| 506 | sha256_finish_ctx(&ctx, alt_result); |
---|
| 507 | memset(temp_result, '\0', sizeof(temp_result)); |
---|
| 508 | memset(p_bytes, '\0', key_len); |
---|
| 509 | memset(s_bytes, '\0', salt_len); |
---|
| 510 | memset(&ctx, '\0', sizeof(ctx)); |
---|
| 511 | memset(&alt_ctx, '\0', sizeof(alt_ctx)); |
---|
| 512 | if (copied_key != NULL) |
---|
| 513 | memset(copied_key, '\0', key_len); |
---|
| 514 | if (copied_salt != NULL) |
---|
| 515 | memset(copied_salt, '\0', salt_len); |
---|
| 516 | |
---|
| 517 | return buffer; |
---|
| 518 | } |
---|
| 519 | |
---|
| 520 | /* This entry point is equivalent to the `crypt' function in Unix |
---|
| 521 | libcs. */ |
---|
| 522 | char *sha256_crypt(const char *key, const char *salt) |
---|
| 523 | { |
---|
| 524 | /* We don't want to have an arbitrary limit in the size of the |
---|
| 525 | password. We can compute an upper bound for the size of the |
---|
| 526 | result in advance and so we can prepare the buffer we pass to |
---|
| 527 | `sha256_crypt_r'. */ |
---|
| 528 | static char *buffer; |
---|
| 529 | static int buflen; |
---|
| 530 | int needed = (sizeof(sha256_salt_prefix) - 1 |
---|
| 531 | + sizeof(sha256_rounds_prefix) + 9 + 1 |
---|
| 532 | + strlen(salt) + 1 + 43 + 1); |
---|
| 533 | |
---|
| 534 | if (buflen < needed) { |
---|
| 535 | char *new_buffer = (char *)realloc(buffer, needed); |
---|
| 536 | if (new_buffer == NULL) |
---|
| 537 | return NULL; |
---|
| 538 | |
---|
| 539 | buffer = new_buffer; |
---|
| 540 | buflen = needed; |
---|
| 541 | } |
---|
| 542 | |
---|
| 543 | return sha256_crypt_r(key, salt, buffer, buflen); |
---|
| 544 | } |
---|
| 545 | |
---|
| 546 | #ifdef TEST |
---|
| 547 | static const struct { |
---|
| 548 | const char *input; |
---|
| 549 | const char result[32]; |
---|
| 550 | } tests[] = { |
---|
| 551 | /* Test vectors from FIPS 180-2: appendix B.1. */ |
---|
| 552 | { |
---|
| 553 | "abc", |
---|
| 554 | "\xba\x78\x16\xbf\x8f\x01\xcf\xea\x41\x41\x40\xde\x5d\xae\x22\x23" |
---|
| 555 | "\xb0\x03\x61\xa3\x96\x17\x7a\x9c\xb4\x10\xff\x61\xf2\x00\x15\xad"}, |
---|
| 556 | /* Test vectors from FIPS 180-2: appendix B.2. */ |
---|
| 557 | { |
---|
| 558 | "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", |
---|
| 559 | "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" |
---|
| 560 | "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"}, |
---|
| 561 | /* Test vectors from the NESSIE project. */ |
---|
| 562 | { |
---|
| 563 | "", "\xe3\xb0\xc4\x42\x98\xfc\x1c\x14\x9a\xfb\xf4\xc8\x99\x6f\xb9\x24" |
---|
| 564 | "\x27\xae\x41\xe4\x64\x9b\x93\x4c\xa4\x95\x99\x1b\x78\x52\xb8\x55"}, |
---|
| 565 | { |
---|
| 566 | "a", "\xca\x97\x81\x12\xca\x1b\xbd\xca\xfa\xc2\x31\xb3\x9a\x23\xdc\x4d" |
---|
| 567 | "\xa7\x86\xef\xf8\x14\x7c\x4e\x72\xb9\x80\x77\x85\xaf\xee\x48\xbb"}, |
---|
| 568 | { |
---|
| 569 | "message digest", |
---|
| 570 | "\xf7\x84\x6f\x55\xcf\x23\xe1\x4e\xeb\xea\xb5\xb4\xe1\x55\x0c\xad" |
---|
| 571 | "\x5b\x50\x9e\x33\x48\xfb\xc4\xef\xa3\xa1\x41\x3d\x39\x3c\xb6\x50"}, |
---|
| 572 | { |
---|
| 573 | "abcdefghijklmnopqrstuvwxyz", |
---|
| 574 | "\x71\xc4\x80\xdf\x93\xd6\xae\x2f\x1e\xfa\xd1\x44\x7c\x66\xc9\x52" |
---|
| 575 | "\x5e\x31\x62\x18\xcf\x51\xfc\x8d\x9e\xd8\x32\xf2\xda\xf1\x8b\x73"}, |
---|
| 576 | { |
---|
| 577 | "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", |
---|
| 578 | "\x24\x8d\x6a\x61\xd2\x06\x38\xb8\xe5\xc0\x26\x93\x0c\x3e\x60\x39" |
---|
| 579 | "\xa3\x3c\xe4\x59\x64\xff\x21\x67\xf6\xec\xed\xd4\x19\xdb\x06\xc1"}, |
---|
| 580 | { |
---|
| 581 | "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", |
---|
| 582 | "\xdb\x4b\xfc\xbd\x4d\xa0\xcd\x85\xa6\x0c\x3c\x37\xd3\xfb\xd8\x80" |
---|
| 583 | "\x5c\x77\xf1\x5f\xc6\xb1\xfd\xfe\x61\x4e\xe0\xa7\xc8\xfd\xb4\xc0"}, |
---|
| 584 | { |
---|
| 585 | "123456789012345678901234567890123456789012345678901234567890" |
---|
| 586 | "12345678901234567890", |
---|
| 587 | "\xf3\x71\xbc\x4a\x31\x1f\x2b\x00\x9e\xef\x95\x2d\xd8\x3c\xa8\x0e" |
---|
| 588 | "\x2b\x60\x02\x6c\x8e\x93\x55\x92\xd0\xf9\xc3\x08\x45\x3c\x81\x3e"} |
---|
| 589 | }; |
---|
| 590 | |
---|
| 591 | #define ntests (sizeof (tests) / sizeof (tests[0])) |
---|
| 592 | |
---|
| 593 | static const struct { |
---|
| 594 | const char *salt; |
---|
| 595 | const char *input; |
---|
| 596 | const char *expected; |
---|
| 597 | } tests2[] = { |
---|
| 598 | { |
---|
| 599 | "$5$saltstring", "Hello world!", |
---|
| 600 | "$5$saltstring$5B8vYYiY.CVt1RlTTf8KbXBH3hsxY/GNooZaBBGWEc5"}, { |
---|
| 601 | "$5$rounds=10000$saltstringsaltstring", "Hello world!", |
---|
| 602 | "$5$rounds=10000$saltstringsaltst$3xv.VbSHBb41AL9AvLeujZkZRBAwqFMz2." |
---|
| 603 | "opqey6IcA"}, { |
---|
| 604 | "$5$rounds=5000$toolongsaltstring", "This is just a test", |
---|
| 605 | "$5$rounds=5000$toolongsaltstrin$Un/5jzAHMgOGZ5.mWJpuVolil07guHPvOW8" |
---|
| 606 | "mGRcvxa5"}, { |
---|
| 607 | "$5$rounds=1400$anotherlongsaltstring", |
---|
| 608 | "a very much longer text to encrypt. This one even stretches over more" |
---|
| 609 | "than one line.", |
---|
| 610 | "$5$rounds=1400$anotherlongsalts$Rx.j8H.h8HjEDGomFU8bDkXm3XIUnzyxf12" |
---|
| 611 | "oP84Bnq1"}, { |
---|
| 612 | "$5$rounds=77777$short", |
---|
| 613 | "we have a short salt string but not a short password", |
---|
| 614 | "$5$rounds=77777$short$JiO1O3ZpDAxGJeaDIuqCoEFysAe1mZNJRs3pw0KQRd/"}, |
---|
| 615 | { |
---|
| 616 | "$5$rounds=123456$asaltof16chars..", "a short string", |
---|
| 617 | "$5$rounds=123456$asaltof16chars..$gP3VQ/6X7UUEW3HkBn2w1/Ptq2jxPyzV/" |
---|
| 618 | "cZKmF/wJvD"}, { |
---|
| 619 | "$5$rounds=10$roundstoolow", "the minimum number is still observed", |
---|
| 620 | "$5$rounds=1000$roundstoolow$yfvwcWrQ8l/K0DAWyuPMDNHpIVlTQebY9l/gL97" |
---|
| 621 | "2bIC"},}; |
---|
| 622 | #define ntests2 (sizeof (tests2) / sizeof (tests2[0])) |
---|
| 623 | |
---|
| 624 | int main(void) |
---|
| 625 | { |
---|
| 626 | struct sha256_ctx ctx; |
---|
| 627 | char sum[32]; |
---|
| 628 | int result = 0; |
---|
| 629 | int cnt; |
---|
| 630 | |
---|
| 631 | for (cnt = 0; cnt < (int)ntests; ++cnt) { |
---|
| 632 | sha256_init_ctx(&ctx); |
---|
| 633 | sha256_process_bytes(tests[cnt].input, strlen(tests[cnt].input), &ctx); |
---|
| 634 | sha256_finish_ctx(&ctx, sum); |
---|
| 635 | if (memcmp(tests[cnt].result, sum, 32) != 0) { |
---|
| 636 | printf("test %d run %d failed\n", cnt, 1); |
---|
| 637 | result = 1; |
---|
| 638 | } |
---|
| 639 | |
---|
| 640 | sha256_init_ctx(&ctx); |
---|
| 641 | for (int i = 0; tests[cnt].input[i] != '\0'; ++i) |
---|
| 642 | sha256_process_bytes(&tests[cnt].input[i], 1, &ctx); |
---|
| 643 | sha256_finish_ctx(&ctx, sum); |
---|
| 644 | if (memcmp(tests[cnt].result, sum, 32) != 0) { |
---|
| 645 | printf("test %d run %d failed\n", cnt, 2); |
---|
| 646 | result = 1; |
---|
| 647 | } |
---|
| 648 | } |
---|
| 649 | |
---|
| 650 | /* Test vector from FIPS 180-2: appendix B.3. */ |
---|
| 651 | char buf[1000]; |
---|
| 652 | memset(buf, 'a', sizeof(buf)); |
---|
| 653 | sha256_init_ctx(&ctx); |
---|
| 654 | for (int i = 0; i < 1000; ++i) |
---|
| 655 | sha256_process_bytes(buf, sizeof(buf), &ctx); |
---|
| 656 | sha256_finish_ctx(&ctx, sum); |
---|
| 657 | static const char expected[32] = |
---|
| 658 | "\xcd\xc7\x6e\x5c\x99\x14\xfb\x92\x81\xa1\xc7\xe2\x84\xd7\x3e\x67" |
---|
| 659 | "\xf1\x80\x9a\x48\xa4\x97\x20\x0e\x04\x6d\x39\xcc\xc7\x11\x2c\xd0"; |
---|
| 660 | if (memcmp(expected, sum, 32) != 0) { |
---|
| 661 | printf("test %d failed\n", cnt); |
---|
| 662 | result = 1; |
---|
| 663 | } |
---|
| 664 | |
---|
| 665 | for (cnt = 0; cnt < ntests2; ++cnt) { |
---|
| 666 | char *cp = sha256_crypt(tests2[cnt].input, tests2[cnt].salt); |
---|
| 667 | |
---|
| 668 | if (strcmp(cp, tests2[cnt].expected) != 0) { |
---|
| 669 | printf("test %d: expected \"%s\", got \"%s\"\n", |
---|
| 670 | cnt, tests2[cnt].expected, cp); |
---|
| 671 | result = 1; |
---|
| 672 | } |
---|
| 673 | } |
---|
| 674 | |
---|
| 675 | if (result == 0) |
---|
| 676 | puts("all tests OK"); |
---|
| 677 | |
---|
| 678 | return result; |
---|
| 679 | } |
---|
| 680 | #endif |
---|