source: bootcd/isolinux/syslinux-6.03/com32/lua/src/lopcodes.h @ 26ffad7

Last change on this file since 26ffad7 was e16e8f2, checked in by Edwin Eefting <edwin@datux.nl>, 3 years ago

bootstuff

  • Property mode set to 100644
File size: 8.3 KB
Line 
1/*
2** $Id: lopcodes.h,v 1.142.1.1 2013/04/12 18:48:47 roberto Exp $
3** Opcodes for Lua virtual machine
4** See Copyright Notice in lua.h
5*/
6
7#ifndef lopcodes_h
8#define lopcodes_h
9
10#include "llimits.h"
11
12
13/*===========================================================================
14  We assume that instructions are unsigned numbers.
15  All instructions have an opcode in the first 6 bits.
16  Instructions can have the following fields:
17        `A' : 8 bits
18        `B' : 9 bits
19        `C' : 9 bits
20        'Ax' : 26 bits ('A', 'B', and 'C' together)
21        `Bx' : 18 bits (`B' and `C' together)
22        `sBx' : signed Bx
23
24  A signed argument is represented in excess K; that is, the number
25  value is the unsigned value minus K. K is exactly the maximum value
26  for that argument (so that -max is represented by 0, and +max is
27  represented by 2*max), which is half the maximum for the corresponding
28  unsigned argument.
29===========================================================================*/
30
31
32enum OpMode {iABC, iABx, iAsBx, iAx};  /* basic instruction format */
33
34
35/*
36** size and position of opcode arguments.
37*/
38#define SIZE_C          9
39#define SIZE_B          9
40#define SIZE_Bx         (SIZE_C + SIZE_B)
41#define SIZE_A          8
42#define SIZE_Ax         (SIZE_C + SIZE_B + SIZE_A)
43
44#define SIZE_OP         6
45
46#define POS_OP          0
47#define POS_A           (POS_OP + SIZE_OP)
48#define POS_C           (POS_A + SIZE_A)
49#define POS_B           (POS_C + SIZE_C)
50#define POS_Bx          POS_C
51#define POS_Ax          POS_A
52
53
54/*
55** limits for opcode arguments.
56** we use (signed) int to manipulate most arguments,
57** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
58*/
59#if SIZE_Bx < LUAI_BITSINT-1
60#define MAXARG_Bx        ((1<<SIZE_Bx)-1)
61#define MAXARG_sBx        (MAXARG_Bx>>1)         /* `sBx' is signed */
62#else
63#define MAXARG_Bx        MAX_INT
64#define MAXARG_sBx        MAX_INT
65#endif
66
67#if SIZE_Ax < LUAI_BITSINT-1
68#define MAXARG_Ax       ((1<<SIZE_Ax)-1)
69#else
70#define MAXARG_Ax       MAX_INT
71#endif
72
73
74#define MAXARG_A        ((1<<SIZE_A)-1)
75#define MAXARG_B        ((1<<SIZE_B)-1)
76#define MAXARG_C        ((1<<SIZE_C)-1)
77
78
79/* creates a mask with `n' 1 bits at position `p' */
80#define MASK1(n,p)      ((~((~(Instruction)0)<<(n)))<<(p))
81
82/* creates a mask with `n' 0 bits at position `p' */
83#define MASK0(n,p)      (~MASK1(n,p))
84
85/*
86** the following macros help to manipulate instructions
87*/
88
89#define GET_OPCODE(i)   (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
90#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
91                ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
92
93#define getarg(i,pos,size)      (cast(int, ((i)>>pos) & MASK1(size,0)))
94#define setarg(i,v,pos,size)    ((i) = (((i)&MASK0(size,pos)) | \
95                ((cast(Instruction, v)<<pos)&MASK1(size,pos))))
96
97#define GETARG_A(i)     getarg(i, POS_A, SIZE_A)
98#define SETARG_A(i,v)   setarg(i, v, POS_A, SIZE_A)
99
100#define GETARG_B(i)     getarg(i, POS_B, SIZE_B)
101#define SETARG_B(i,v)   setarg(i, v, POS_B, SIZE_B)
102
103#define GETARG_C(i)     getarg(i, POS_C, SIZE_C)
104#define SETARG_C(i,v)   setarg(i, v, POS_C, SIZE_C)
105
106#define GETARG_Bx(i)    getarg(i, POS_Bx, SIZE_Bx)
107#define SETARG_Bx(i,v)  setarg(i, v, POS_Bx, SIZE_Bx)
108
109#define GETARG_Ax(i)    getarg(i, POS_Ax, SIZE_Ax)
110#define SETARG_Ax(i,v)  setarg(i, v, POS_Ax, SIZE_Ax)
111
112#define GETARG_sBx(i)   (GETARG_Bx(i)-MAXARG_sBx)
113#define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
114
115
116#define CREATE_ABC(o,a,b,c)     ((cast(Instruction, o)<<POS_OP) \
117                        | (cast(Instruction, a)<<POS_A) \
118                        | (cast(Instruction, b)<<POS_B) \
119                        | (cast(Instruction, c)<<POS_C))
120
121#define CREATE_ABx(o,a,bc)      ((cast(Instruction, o)<<POS_OP) \
122                        | (cast(Instruction, a)<<POS_A) \
123                        | (cast(Instruction, bc)<<POS_Bx))
124
125#define CREATE_Ax(o,a)          ((cast(Instruction, o)<<POS_OP) \
126                        | (cast(Instruction, a)<<POS_Ax))
127
128
129/*
130** Macros to operate RK indices
131*/
132
133/* this bit 1 means constant (0 means register) */
134#define BITRK           (1 << (SIZE_B - 1))
135
136/* test whether value is a constant */
137#define ISK(x)          ((x) & BITRK)
138
139/* gets the index of the constant */
140#define INDEXK(r)       ((int)(r) & ~BITRK)
141
142#define MAXINDEXRK      (BITRK - 1)
143
144/* code a constant index as a RK value */
145#define RKASK(x)        ((x) | BITRK)
146
147
148/*
149** invalid register that fits in 8 bits
150*/
151#define NO_REG          MAXARG_A
152
153
154/*
155** R(x) - register
156** Kst(x) - constant (in constant table)
157** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
158*/
159
160
161/*
162** grep "ORDER OP" if you change these enums
163*/
164
165typedef enum {
166/*----------------------------------------------------------------------
167name            args    description
168------------------------------------------------------------------------*/
169OP_MOVE,/*      A B     R(A) := R(B)                                    */
170OP_LOADK,/*     A Bx    R(A) := Kst(Bx)                                 */
171OP_LOADKX,/*    A       R(A) := Kst(extra arg)                          */
172OP_LOADBOOL,/*  A B C   R(A) := (Bool)B; if (C) pc++                    */
173OP_LOADNIL,/*   A B     R(A), R(A+1), ..., R(A+B) := nil                */
174OP_GETUPVAL,/*  A B     R(A) := UpValue[B]                              */
175
176OP_GETTABUP,/*  A B C   R(A) := UpValue[B][RK(C)]                       */
177OP_GETTABLE,/*  A B C   R(A) := R(B)[RK(C)]                             */
178
179OP_SETTABUP,/*  A B C   UpValue[A][RK(B)] := RK(C)                      */
180OP_SETUPVAL,/*  A B     UpValue[B] := R(A)                              */
181OP_SETTABLE,/*  A B C   R(A)[RK(B)] := RK(C)                            */
182
183OP_NEWTABLE,/*  A B C   R(A) := {} (size = B,C)                         */
184
185OP_SELF,/*      A B C   R(A+1) := R(B); R(A) := R(B)[RK(C)]             */
186
187OP_ADD,/*       A B C   R(A) := RK(B) + RK(C)                           */
188OP_SUB,/*       A B C   R(A) := RK(B) - RK(C)                           */
189OP_MUL,/*       A B C   R(A) := RK(B) * RK(C)                           */
190OP_DIV,/*       A B C   R(A) := RK(B) / RK(C)                           */
191OP_MOD,/*       A B C   R(A) := RK(B) % RK(C)                           */
192OP_POW,/*       A B C   R(A) := RK(B) ^ RK(C)                           */
193OP_UNM,/*       A B     R(A) := -R(B)                                   */
194OP_NOT,/*       A B     R(A) := not R(B)                                */
195OP_LEN,/*       A B     R(A) := length of R(B)                          */
196
197OP_CONCAT,/*    A B C   R(A) := R(B).. ... ..R(C)                       */
198
199OP_JMP,/*       A sBx   pc+=sBx; if (A) close all upvalues >= R(A) + 1  */
200OP_EQ,/*        A B C   if ((RK(B) == RK(C)) ~= A) then pc++            */
201OP_LT,/*        A B C   if ((RK(B) <  RK(C)) ~= A) then pc++            */
202OP_LE,/*        A B C   if ((RK(B) <= RK(C)) ~= A) then pc++            */
203
204OP_TEST,/*      A C     if not (R(A) <=> C) then pc++                   */
205OP_TESTSET,/*   A B C   if (R(B) <=> C) then R(A) := R(B) else pc++     */
206
207OP_CALL,/*      A B C   R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
208OP_TAILCALL,/*  A B C   return R(A)(R(A+1), ... ,R(A+B-1))              */
209OP_RETURN,/*    A B     return R(A), ... ,R(A+B-2)      (see note)      */
210
211OP_FORLOOP,/*   A sBx   R(A)+=R(A+2);
212                        if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
213OP_FORPREP,/*   A sBx   R(A)-=R(A+2); pc+=sBx                           */
214
215OP_TFORCALL,/*  A C     R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));  */
216OP_TFORLOOP,/*  A sBx   if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/
217
218OP_SETLIST,/*   A B C   R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B        */
219
220OP_CLOSURE,/*   A Bx    R(A) := closure(KPROTO[Bx])                     */
221
222OP_VARARG,/*    A B     R(A), R(A+1), ..., R(A+B-2) = vararg            */
223
224OP_EXTRAARG/*   Ax      extra (larger) argument for previous opcode     */
225} OpCode;
226
227
228#define NUM_OPCODES     (cast(int, OP_EXTRAARG) + 1)
229
230
231
232/*===========================================================================
233  Notes:
234  (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then `top' is
235  set to last_result+1, so next open instruction (OP_CALL, OP_RETURN,
236  OP_SETLIST) may use `top'.
237
238  (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
239  set top (like in OP_CALL with C == 0).
240
241  (*) In OP_RETURN, if (B == 0) then return up to `top'.
242
243  (*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next
244  'instruction' is EXTRAARG(real C).
245
246  (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
247
248  (*) For comparisons, A specifies what condition the test should accept
249  (true or false).
250
251  (*) All `skips' (pc++) assume that next instruction is a jump.
252
253===========================================================================*/
254
255
256/*
257** masks for instruction properties. The format is:
258** bits 0-1: op mode
259** bits 2-3: C arg mode
260** bits 4-5: B arg mode
261** bit 6: instruction set register A
262** bit 7: operator is a test (next instruction must be a jump)
263*/
264
265enum OpArgMask {
266  OpArgN,  /* argument is not used */
267  OpArgU,  /* argument is used */
268  OpArgR,  /* argument is a register or a jump offset */
269  OpArgK   /* argument is a constant or register/constant */
270};
271
272LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES];
273
274#define getOpMode(m)    (cast(enum OpMode, luaP_opmodes[m] & 3))
275#define getBMode(m)     (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
276#define getCMode(m)     (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
277#define testAMode(m)    (luaP_opmodes[m] & (1 << 6))
278#define testTMode(m)    (luaP_opmodes[m] & (1 << 7))
279
280
281LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1];  /* opcode names */
282
283
284/* number of list items to accumulate before a SETLIST instruction */
285#define LFIELDS_PER_FLUSH       50
286
287
288#endif
Note: See TracBrowser for help on using the repository browser.