[e16e8f2] | 1 | /* |
---|
| 2 | * Copyright(C) 2006 Cameron Rich |
---|
| 3 | * |
---|
| 4 | * This library is free software; you can redistribute it and/or modify |
---|
| 5 | * it under the terms of the GNU Lesser General Public License as published by |
---|
| 6 | * the Free Software Foundation; either version 2.1 of the License, or |
---|
| 7 | * (at your option) any later version. |
---|
| 8 | * |
---|
| 9 | * This library is distributed in the hope that it will be useful, |
---|
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 12 | * GNU Lesser General Public License for more details. |
---|
| 13 | * |
---|
| 14 | * You should have received a copy of the GNU Lesser General Public License |
---|
| 15 | * along with this library; if not, write to the Free Software |
---|
| 16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | /** |
---|
| 20 | * @defgroup bigint_api Big Integer API |
---|
| 21 | * @brief The bigint implementation as used by the axTLS project. |
---|
| 22 | * |
---|
| 23 | * The bigint library is for RSA encryption/decryption as well as signing. |
---|
| 24 | * This code tries to minimise use of malloc/free by maintaining a small |
---|
| 25 | * cache. A bigint context may maintain state by being made "permanent". |
---|
| 26 | * It be be later released with a bi_depermanent() and bi_free() call. |
---|
| 27 | * |
---|
| 28 | * It supports the following reduction techniques: |
---|
| 29 | * - Classical |
---|
| 30 | * - Barrett |
---|
| 31 | * - Montgomery |
---|
| 32 | * |
---|
| 33 | * It also implements the following: |
---|
| 34 | * - Karatsuba multiplication |
---|
| 35 | * - Squaring |
---|
| 36 | * - Sliding window exponentiation |
---|
| 37 | * - Chinese Remainder Theorem (implemented in rsa.c). |
---|
| 38 | * |
---|
| 39 | * All the algorithms used are pretty standard, and designed for different |
---|
| 40 | * data bus sizes. Negative numbers are not dealt with at all, so a subtraction |
---|
| 41 | * may need to be tested for negativity. |
---|
| 42 | * |
---|
| 43 | * This library steals some ideas from Jef Poskanzer |
---|
| 44 | * <http://cs.marlboro.edu/term/cs-fall02/algorithms/crypto/RSA/bigint> |
---|
| 45 | * and GMP <http://www.swox.com/gmp>. It gets most of its implementation |
---|
| 46 | * detail from "The Handbook of Applied Cryptography" |
---|
| 47 | * <http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf> |
---|
| 48 | * @{ |
---|
| 49 | */ |
---|
| 50 | |
---|
| 51 | #include <stdlib.h> |
---|
| 52 | #include <limits.h> |
---|
| 53 | #include <string.h> |
---|
| 54 | #include <stdio.h> |
---|
| 55 | #include <time.h> |
---|
| 56 | #include "bigint.h" |
---|
| 57 | #include "crypto.h" |
---|
| 58 | |
---|
| 59 | static bigint *bi_int_multiply(BI_CTX *ctx, bigint *bi, comp i); |
---|
| 60 | static bigint *bi_int_divide(BI_CTX *ctx, bigint *biR, comp denom); |
---|
| 61 | static bigint __malloc *alloc(BI_CTX *ctx, int size); |
---|
| 62 | static bigint *trim(bigint *bi); |
---|
| 63 | static void more_comps(bigint *bi, int n); |
---|
| 64 | #if defined(CONFIG_BIGINT_KARATSUBA) || defined(CONFIG_BIGINT_BARRETT) || \ |
---|
| 65 | defined(CONFIG_BIGINT_MONTGOMERY) |
---|
| 66 | static bigint *comp_right_shift(bigint *biR, int num_shifts); |
---|
| 67 | static bigint *comp_left_shift(bigint *biR, int num_shifts); |
---|
| 68 | #endif |
---|
| 69 | |
---|
| 70 | #ifdef CONFIG_BIGINT_CHECK_ON |
---|
| 71 | static void check(const bigint *bi); |
---|
| 72 | #endif |
---|
| 73 | |
---|
| 74 | /** |
---|
| 75 | * @brief Start a new bigint context. |
---|
| 76 | * @return A bigint context. |
---|
| 77 | */ |
---|
| 78 | BI_CTX *bi_initialize(void) |
---|
| 79 | { |
---|
| 80 | /* calloc() sets everything to zero */ |
---|
| 81 | BI_CTX *ctx = (BI_CTX *)calloc(1, sizeof(BI_CTX)); |
---|
| 82 | |
---|
| 83 | /* the radix */ |
---|
| 84 | ctx->bi_radix = alloc(ctx, 2); |
---|
| 85 | ctx->bi_radix->comps[0] = 0; |
---|
| 86 | ctx->bi_radix->comps[1] = 1; |
---|
| 87 | bi_permanent(ctx->bi_radix); |
---|
| 88 | return ctx; |
---|
| 89 | } |
---|
| 90 | |
---|
| 91 | /** |
---|
| 92 | * @brief Close the bigint context and free any resources. |
---|
| 93 | * |
---|
| 94 | * Free up any used memory - a check is done if all objects were not |
---|
| 95 | * properly freed. |
---|
| 96 | * @param ctx [in] The bigint session context. |
---|
| 97 | */ |
---|
| 98 | void bi_terminate(BI_CTX *ctx) |
---|
| 99 | { |
---|
| 100 | bigint *p, *pn; |
---|
| 101 | |
---|
| 102 | bi_depermanent(ctx->bi_radix); |
---|
| 103 | bi_free(ctx, ctx->bi_radix); |
---|
| 104 | |
---|
| 105 | if (ctx->active_count != 0) |
---|
| 106 | { |
---|
| 107 | #ifdef CONFIG_SSL_FULL_MODE |
---|
| 108 | printf("bi_terminate: there were %d un-freed bigints\n", |
---|
| 109 | ctx->active_count); |
---|
| 110 | #endif |
---|
| 111 | abort(); |
---|
| 112 | } |
---|
| 113 | |
---|
| 114 | for (p = ctx->free_list; p != NULL; p = pn) |
---|
| 115 | { |
---|
| 116 | pn = p->next; |
---|
| 117 | free(p->comps); |
---|
| 118 | free(p); |
---|
| 119 | } |
---|
| 120 | |
---|
| 121 | free(ctx); |
---|
| 122 | } |
---|
| 123 | |
---|
| 124 | /** |
---|
| 125 | * @brief Increment the number of references to this object. |
---|
| 126 | * It does not do a full copy. |
---|
| 127 | * @param bi [in] The bigint to copy. |
---|
| 128 | * @return A reference to the same bigint. |
---|
| 129 | */ |
---|
| 130 | bigint *bi_copy(bigint *bi) |
---|
| 131 | { |
---|
| 132 | check(bi); |
---|
| 133 | if (bi->refs != PERMANENT) |
---|
| 134 | bi->refs++; |
---|
| 135 | return bi; |
---|
| 136 | } |
---|
| 137 | |
---|
| 138 | /** |
---|
| 139 | * @brief Simply make a bigint object "unfreeable" if bi_free() is called on it. |
---|
| 140 | * |
---|
| 141 | * For this object to be freed, bi_depermanent() must be called. |
---|
| 142 | * @param bi [in] The bigint to be made permanent. |
---|
| 143 | */ |
---|
| 144 | void bi_permanent(bigint *bi) |
---|
| 145 | { |
---|
| 146 | check(bi); |
---|
| 147 | if (bi->refs != 1) |
---|
| 148 | { |
---|
| 149 | #ifdef CONFIG_SSL_FULL_MODE |
---|
| 150 | printf("bi_permanent: refs was not 1\n"); |
---|
| 151 | #endif |
---|
| 152 | abort(); |
---|
| 153 | } |
---|
| 154 | |
---|
| 155 | bi->refs = PERMANENT; |
---|
| 156 | } |
---|
| 157 | |
---|
| 158 | /** |
---|
| 159 | * @brief Take a permanent object and make it eligible for freedom. |
---|
| 160 | * @param bi [in] The bigint to be made back to temporary. |
---|
| 161 | */ |
---|
| 162 | void bi_depermanent(bigint *bi) |
---|
| 163 | { |
---|
| 164 | check(bi); |
---|
| 165 | if (bi->refs != PERMANENT) |
---|
| 166 | { |
---|
| 167 | #ifdef CONFIG_SSL_FULL_MODE |
---|
| 168 | printf("bi_depermanent: bigint was not permanent\n"); |
---|
| 169 | #endif |
---|
| 170 | abort(); |
---|
| 171 | } |
---|
| 172 | |
---|
| 173 | bi->refs = 1; |
---|
| 174 | } |
---|
| 175 | |
---|
| 176 | /** |
---|
| 177 | * @brief Free a bigint object so it can be used again. |
---|
| 178 | * |
---|
| 179 | * The memory itself it not actually freed, just tagged as being available |
---|
| 180 | * @param ctx [in] The bigint session context. |
---|
| 181 | * @param bi [in] The bigint to be freed. |
---|
| 182 | */ |
---|
| 183 | void bi_free(BI_CTX *ctx, bigint *bi) |
---|
| 184 | { |
---|
| 185 | check(bi); |
---|
| 186 | if (bi->refs == PERMANENT) |
---|
| 187 | { |
---|
| 188 | return; |
---|
| 189 | } |
---|
| 190 | |
---|
| 191 | if (--bi->refs > 0) |
---|
| 192 | { |
---|
| 193 | return; |
---|
| 194 | } |
---|
| 195 | |
---|
| 196 | bi->next = ctx->free_list; |
---|
| 197 | ctx->free_list = bi; |
---|
| 198 | ctx->free_count++; |
---|
| 199 | |
---|
| 200 | if (--ctx->active_count < 0) |
---|
| 201 | { |
---|
| 202 | #ifdef CONFIG_SSL_FULL_MODE |
---|
| 203 | printf("bi_free: active_count went negative " |
---|
| 204 | "- double-freed bigint?\n"); |
---|
| 205 | #endif |
---|
| 206 | abort(); |
---|
| 207 | } |
---|
| 208 | } |
---|
| 209 | |
---|
| 210 | /** |
---|
| 211 | * @brief Convert an (unsigned) integer into a bigint. |
---|
| 212 | * @param ctx [in] The bigint session context. |
---|
| 213 | * @param i [in] The (unsigned) integer to be converted. |
---|
| 214 | * |
---|
| 215 | */ |
---|
| 216 | bigint *int_to_bi(BI_CTX *ctx, comp i) |
---|
| 217 | { |
---|
| 218 | bigint *biR = alloc(ctx, 1); |
---|
| 219 | biR->comps[0] = i; |
---|
| 220 | return biR; |
---|
| 221 | } |
---|
| 222 | |
---|
| 223 | /** |
---|
| 224 | * @brief Do a full copy of the bigint object. |
---|
| 225 | * @param ctx [in] The bigint session context. |
---|
| 226 | * @param bi [in] The bigint object to be copied. |
---|
| 227 | */ |
---|
| 228 | bigint *bi_clone(BI_CTX *ctx, const bigint *bi) |
---|
| 229 | { |
---|
| 230 | bigint *biR = alloc(ctx, bi->size); |
---|
| 231 | check(bi); |
---|
| 232 | memcpy(biR->comps, bi->comps, bi->size*COMP_BYTE_SIZE); |
---|
| 233 | return biR; |
---|
| 234 | } |
---|
| 235 | |
---|
| 236 | /** |
---|
| 237 | * @brief Perform an addition operation between two bigints. |
---|
| 238 | * @param ctx [in] The bigint session context. |
---|
| 239 | * @param bia [in] A bigint. |
---|
| 240 | * @param bib [in] Another bigint. |
---|
| 241 | * @return The result of the addition. |
---|
| 242 | */ |
---|
| 243 | bigint *bi_add(BI_CTX *ctx, bigint *bia, bigint *bib) |
---|
| 244 | { |
---|
| 245 | int n; |
---|
| 246 | comp carry = 0; |
---|
| 247 | comp *pa, *pb; |
---|
| 248 | |
---|
| 249 | check(bia); |
---|
| 250 | check(bib); |
---|
| 251 | |
---|
| 252 | n = max(bia->size, bib->size); |
---|
| 253 | more_comps(bia, n+1); |
---|
| 254 | more_comps(bib, n); |
---|
| 255 | pa = bia->comps; |
---|
| 256 | pb = bib->comps; |
---|
| 257 | |
---|
| 258 | do |
---|
| 259 | { |
---|
| 260 | comp sl, rl, cy1; |
---|
| 261 | sl = *pa + *pb++; |
---|
| 262 | rl = sl + carry; |
---|
| 263 | cy1 = sl < *pa; |
---|
| 264 | carry = cy1 | (rl < sl); |
---|
| 265 | *pa++ = rl; |
---|
| 266 | } while (--n != 0); |
---|
| 267 | |
---|
| 268 | *pa = carry; /* do overflow */ |
---|
| 269 | bi_free(ctx, bib); |
---|
| 270 | return trim(bia); |
---|
| 271 | } |
---|
| 272 | |
---|
| 273 | /** |
---|
| 274 | * @brief Perform a subtraction operation between two bigints. |
---|
| 275 | * @param ctx [in] The bigint session context. |
---|
| 276 | * @param bia [in] A bigint. |
---|
| 277 | * @param bib [in] Another bigint. |
---|
| 278 | * @param is_negative [out] If defined, indicates that the result was negative. |
---|
| 279 | * is_negative may be null. |
---|
| 280 | * @return The result of the subtraction. The result is always positive. |
---|
| 281 | */ |
---|
| 282 | bigint *bi_subtract(BI_CTX *ctx, |
---|
| 283 | bigint *bia, bigint *bib, int *is_negative) |
---|
| 284 | { |
---|
| 285 | int n = bia->size; |
---|
| 286 | comp *pa, *pb, carry = 0; |
---|
| 287 | |
---|
| 288 | check(bia); |
---|
| 289 | check(bib); |
---|
| 290 | |
---|
| 291 | more_comps(bib, n); |
---|
| 292 | pa = bia->comps; |
---|
| 293 | pb = bib->comps; |
---|
| 294 | |
---|
| 295 | do |
---|
| 296 | { |
---|
| 297 | comp sl, rl, cy1; |
---|
| 298 | sl = *pa - *pb++; |
---|
| 299 | rl = sl - carry; |
---|
| 300 | cy1 = sl > *pa; |
---|
| 301 | carry = cy1 | (rl > sl); |
---|
| 302 | *pa++ = rl; |
---|
| 303 | } while (--n != 0); |
---|
| 304 | |
---|
| 305 | if (is_negative) /* indicate a negative result */ |
---|
| 306 | { |
---|
| 307 | *is_negative = carry; |
---|
| 308 | } |
---|
| 309 | |
---|
| 310 | bi_free(ctx, trim(bib)); /* put bib back to the way it was */ |
---|
| 311 | return trim(bia); |
---|
| 312 | } |
---|
| 313 | |
---|
| 314 | /** |
---|
| 315 | * Perform a multiply between a bigint an an (unsigned) integer |
---|
| 316 | */ |
---|
| 317 | static bigint *bi_int_multiply(BI_CTX *ctx, bigint *bia, comp b) |
---|
| 318 | { |
---|
| 319 | int j = 0, n = bia->size; |
---|
| 320 | bigint *biR = alloc(ctx, n + 1); |
---|
| 321 | comp carry = 0; |
---|
| 322 | comp *r = biR->comps; |
---|
| 323 | comp *a = bia->comps; |
---|
| 324 | |
---|
| 325 | check(bia); |
---|
| 326 | |
---|
| 327 | /* clear things to start with */ |
---|
| 328 | memset(r, 0, ((n+1)*COMP_BYTE_SIZE)); |
---|
| 329 | |
---|
| 330 | do |
---|
| 331 | { |
---|
| 332 | long_comp tmp = *r + (long_comp)a[j]*b + carry; |
---|
| 333 | *r++ = (comp)tmp; /* downsize */ |
---|
| 334 | carry = (comp)(tmp >> COMP_BIT_SIZE); |
---|
| 335 | } while (++j < n); |
---|
| 336 | |
---|
| 337 | *r = carry; |
---|
| 338 | bi_free(ctx, bia); |
---|
| 339 | return trim(biR); |
---|
| 340 | } |
---|
| 341 | |
---|
| 342 | /** |
---|
| 343 | * @brief Does both division and modulo calculations. |
---|
| 344 | * |
---|
| 345 | * Used extensively when doing classical reduction. |
---|
| 346 | * @param ctx [in] The bigint session context. |
---|
| 347 | * @param u [in] A bigint which is the numerator. |
---|
| 348 | * @param v [in] Either the denominator or the modulus depending on the mode. |
---|
| 349 | * @param is_mod [n] Determines if this is a normal division (0) or a reduction |
---|
| 350 | * (1). |
---|
| 351 | * @return The result of the division/reduction. |
---|
| 352 | */ |
---|
| 353 | bigint *bi_divide(BI_CTX *ctx, bigint *u, bigint *v, int is_mod) |
---|
| 354 | { |
---|
| 355 | int n = v->size, m = u->size-n; |
---|
| 356 | int j = 0, orig_u_size = u->size; |
---|
| 357 | uint8_t mod_offset = ctx->mod_offset; |
---|
| 358 | comp d; |
---|
| 359 | bigint *quotient, *tmp_u; |
---|
| 360 | comp q_dash; |
---|
| 361 | |
---|
| 362 | check(u); |
---|
| 363 | check(v); |
---|
| 364 | |
---|
| 365 | /* if doing reduction and we are < mod, then return mod */ |
---|
| 366 | if (is_mod && bi_compare(v, u) > 0) |
---|
| 367 | { |
---|
| 368 | bi_free(ctx, v); |
---|
| 369 | return u; |
---|
| 370 | } |
---|
| 371 | |
---|
| 372 | quotient = alloc(ctx, m+1); |
---|
| 373 | tmp_u = alloc(ctx, n+1); |
---|
| 374 | v = trim(v); /* make sure we have no leading 0's */ |
---|
| 375 | d = (comp)((long_comp)COMP_RADIX/(V1+1)); |
---|
| 376 | |
---|
| 377 | /* clear things to start with */ |
---|
| 378 | memset(quotient->comps, 0, ((quotient->size)*COMP_BYTE_SIZE)); |
---|
| 379 | |
---|
| 380 | /* normalise */ |
---|
| 381 | if (d > 1) |
---|
| 382 | { |
---|
| 383 | u = bi_int_multiply(ctx, u, d); |
---|
| 384 | |
---|
| 385 | if (is_mod) |
---|
| 386 | { |
---|
| 387 | v = ctx->bi_normalised_mod[mod_offset]; |
---|
| 388 | } |
---|
| 389 | else |
---|
| 390 | { |
---|
| 391 | v = bi_int_multiply(ctx, v, d); |
---|
| 392 | } |
---|
| 393 | } |
---|
| 394 | |
---|
| 395 | if (orig_u_size == u->size) /* new digit position u0 */ |
---|
| 396 | { |
---|
| 397 | more_comps(u, orig_u_size + 1); |
---|
| 398 | } |
---|
| 399 | |
---|
| 400 | do |
---|
| 401 | { |
---|
| 402 | /* get a temporary short version of u */ |
---|
| 403 | memcpy(tmp_u->comps, &u->comps[u->size-n-1-j], (n+1)*COMP_BYTE_SIZE); |
---|
| 404 | |
---|
| 405 | /* calculate q' */ |
---|
| 406 | if (U(0) == V1) |
---|
| 407 | { |
---|
| 408 | q_dash = COMP_RADIX-1; |
---|
| 409 | } |
---|
| 410 | else |
---|
| 411 | { |
---|
| 412 | q_dash = (comp)(((long_comp)U(0)*COMP_RADIX + U(1))/V1); |
---|
| 413 | } |
---|
| 414 | |
---|
| 415 | if (v->size > 1 && V2) |
---|
| 416 | { |
---|
| 417 | /* we are implementing the following: |
---|
| 418 | if (V2*q_dash > (((U(0)*COMP_RADIX + U(1) - |
---|
| 419 | q_dash*V1)*COMP_RADIX) + U(2))) ... */ |
---|
| 420 | comp inner = (comp)((long_comp)COMP_RADIX*U(0) + U(1) - |
---|
| 421 | (long_comp)q_dash*V1); |
---|
| 422 | if ((long_comp)V2*q_dash > (long_comp)inner*COMP_RADIX + U(2)) |
---|
| 423 | { |
---|
| 424 | q_dash--; |
---|
| 425 | } |
---|
| 426 | } |
---|
| 427 | |
---|
| 428 | /* multiply and subtract */ |
---|
| 429 | if (q_dash) |
---|
| 430 | { |
---|
| 431 | int is_negative; |
---|
| 432 | tmp_u = bi_subtract(ctx, tmp_u, |
---|
| 433 | bi_int_multiply(ctx, bi_copy(v), q_dash), &is_negative); |
---|
| 434 | more_comps(tmp_u, n+1); |
---|
| 435 | |
---|
| 436 | Q(j) = q_dash; |
---|
| 437 | |
---|
| 438 | /* add back */ |
---|
| 439 | if (is_negative) |
---|
| 440 | { |
---|
| 441 | Q(j)--; |
---|
| 442 | tmp_u = bi_add(ctx, tmp_u, bi_copy(v)); |
---|
| 443 | |
---|
| 444 | /* lop off the carry */ |
---|
| 445 | tmp_u->size--; |
---|
| 446 | v->size--; |
---|
| 447 | } |
---|
| 448 | } |
---|
| 449 | else |
---|
| 450 | { |
---|
| 451 | Q(j) = 0; |
---|
| 452 | } |
---|
| 453 | |
---|
| 454 | /* copy back to u */ |
---|
| 455 | memcpy(&u->comps[u->size-n-1-j], tmp_u->comps, (n+1)*COMP_BYTE_SIZE); |
---|
| 456 | } while (++j <= m); |
---|
| 457 | |
---|
| 458 | bi_free(ctx, tmp_u); |
---|
| 459 | bi_free(ctx, v); |
---|
| 460 | |
---|
| 461 | if (is_mod) /* get the remainder */ |
---|
| 462 | { |
---|
| 463 | bi_free(ctx, quotient); |
---|
| 464 | return bi_int_divide(ctx, trim(u), d); |
---|
| 465 | } |
---|
| 466 | else /* get the quotient */ |
---|
| 467 | { |
---|
| 468 | bi_free(ctx, u); |
---|
| 469 | return trim(quotient); |
---|
| 470 | } |
---|
| 471 | } |
---|
| 472 | |
---|
| 473 | /* |
---|
| 474 | * Perform an integer divide on a bigint. |
---|
| 475 | */ |
---|
| 476 | static bigint *bi_int_divide(BI_CTX *ctx __unused, bigint *biR, comp denom) |
---|
| 477 | { |
---|
| 478 | int i = biR->size - 1; |
---|
| 479 | long_comp r = 0; |
---|
| 480 | |
---|
| 481 | check(biR); |
---|
| 482 | |
---|
| 483 | do |
---|
| 484 | { |
---|
| 485 | r = (r<<COMP_BIT_SIZE) + biR->comps[i]; |
---|
| 486 | biR->comps[i] = (comp)(r / denom); |
---|
| 487 | r %= denom; |
---|
| 488 | } while (--i != 0); |
---|
| 489 | |
---|
| 490 | return trim(biR); |
---|
| 491 | } |
---|
| 492 | |
---|
| 493 | #ifdef CONFIG_BIGINT_MONTGOMERY |
---|
| 494 | /** |
---|
| 495 | * There is a need for the value of integer N' such that B^-1(B-1)-N^-1N'=1, |
---|
| 496 | * where B^-1(B-1) mod N=1. Actually, only the least significant part of |
---|
| 497 | * N' is needed, hence the definition N0'=N' mod b. We reproduce below the |
---|
| 498 | * simple algorithm from an article by Dusse and Kaliski to efficiently |
---|
| 499 | * find N0' from N0 and b */ |
---|
| 500 | static comp modular_inverse(bigint *bim) |
---|
| 501 | { |
---|
| 502 | int i; |
---|
| 503 | comp t = 1; |
---|
| 504 | comp two_2_i_minus_1 = 2; /* 2^(i-1) */ |
---|
| 505 | long_comp two_2_i = 4; /* 2^i */ |
---|
| 506 | comp N = bim->comps[0]; |
---|
| 507 | |
---|
| 508 | for (i = 2; i <= COMP_BIT_SIZE; i++) |
---|
| 509 | { |
---|
| 510 | if ((long_comp)N*t%two_2_i >= two_2_i_minus_1) |
---|
| 511 | { |
---|
| 512 | t += two_2_i_minus_1; |
---|
| 513 | } |
---|
| 514 | |
---|
| 515 | two_2_i_minus_1 <<= 1; |
---|
| 516 | two_2_i <<= 1; |
---|
| 517 | } |
---|
| 518 | |
---|
| 519 | return (comp)(COMP_RADIX-t); |
---|
| 520 | } |
---|
| 521 | #endif |
---|
| 522 | |
---|
| 523 | #if defined(CONFIG_BIGINT_KARATSUBA) || defined(CONFIG_BIGINT_BARRETT) || \ |
---|
| 524 | defined(CONFIG_BIGINT_MONTGOMERY) |
---|
| 525 | /** |
---|
| 526 | * Take each component and shift down (in terms of components) |
---|
| 527 | */ |
---|
| 528 | static bigint *comp_right_shift(bigint *biR, int num_shifts) |
---|
| 529 | { |
---|
| 530 | int i = biR->size-num_shifts; |
---|
| 531 | comp *x = biR->comps; |
---|
| 532 | comp *y = &biR->comps[num_shifts]; |
---|
| 533 | |
---|
| 534 | check(biR); |
---|
| 535 | |
---|
| 536 | if (i <= 0) /* have we completely right shifted? */ |
---|
| 537 | { |
---|
| 538 | biR->comps[0] = 0; /* return 0 */ |
---|
| 539 | biR->size = 1; |
---|
| 540 | return biR; |
---|
| 541 | } |
---|
| 542 | |
---|
| 543 | do |
---|
| 544 | { |
---|
| 545 | *x++ = *y++; |
---|
| 546 | } while (--i > 0); |
---|
| 547 | |
---|
| 548 | biR->size -= num_shifts; |
---|
| 549 | return biR; |
---|
| 550 | } |
---|
| 551 | |
---|
| 552 | /** |
---|
| 553 | * Take each component and shift it up (in terms of components) |
---|
| 554 | */ |
---|
| 555 | static bigint *comp_left_shift(bigint *biR, int num_shifts) |
---|
| 556 | { |
---|
| 557 | int i = biR->size-1; |
---|
| 558 | comp *x, *y; |
---|
| 559 | |
---|
| 560 | check(biR); |
---|
| 561 | |
---|
| 562 | if (num_shifts <= 0) |
---|
| 563 | { |
---|
| 564 | return biR; |
---|
| 565 | } |
---|
| 566 | |
---|
| 567 | more_comps(biR, biR->size + num_shifts); |
---|
| 568 | |
---|
| 569 | x = &biR->comps[i+num_shifts]; |
---|
| 570 | y = &biR->comps[i]; |
---|
| 571 | |
---|
| 572 | do |
---|
| 573 | { |
---|
| 574 | *x-- = *y--; |
---|
| 575 | } while (i--); |
---|
| 576 | |
---|
| 577 | memset(biR->comps, 0, num_shifts*COMP_BYTE_SIZE); /* zero LS comps */ |
---|
| 578 | return biR; |
---|
| 579 | } |
---|
| 580 | #endif |
---|
| 581 | |
---|
| 582 | /** |
---|
| 583 | * @brief Allow a binary sequence to be imported as a bigint. |
---|
| 584 | * @param ctx [in] The bigint session context. |
---|
| 585 | * @param data [in] The data to be converted. |
---|
| 586 | * @param size [in] The number of bytes of data. |
---|
| 587 | * @return A bigint representing this data. |
---|
| 588 | */ |
---|
| 589 | bigint *bi_import(BI_CTX *ctx, const uint8_t *data, int size) |
---|
| 590 | { |
---|
| 591 | bigint *biR = alloc(ctx, (size+COMP_BYTE_SIZE-1)/COMP_BYTE_SIZE); |
---|
| 592 | int i, j = 0, offset = 0; |
---|
| 593 | |
---|
| 594 | memset(biR->comps, 0, biR->size*COMP_BYTE_SIZE); |
---|
| 595 | |
---|
| 596 | for (i = size-1; i >= 0; i--) |
---|
| 597 | { |
---|
| 598 | biR->comps[offset] += data[i] << (j*8); |
---|
| 599 | |
---|
| 600 | if (++j == COMP_BYTE_SIZE) |
---|
| 601 | { |
---|
| 602 | j = 0; |
---|
| 603 | offset ++; |
---|
| 604 | } |
---|
| 605 | } |
---|
| 606 | |
---|
| 607 | return trim(biR); |
---|
| 608 | } |
---|
| 609 | |
---|
| 610 | #ifdef CONFIG_SSL_FULL_MODE |
---|
| 611 | /** |
---|
| 612 | * @brief The testharness uses this code to import text hex-streams and |
---|
| 613 | * convert them into bigints. |
---|
| 614 | * @param ctx [in] The bigint session context. |
---|
| 615 | * @param data [in] A string consisting of hex characters. The characters must |
---|
| 616 | * be in upper case. |
---|
| 617 | * @return A bigint representing this data. |
---|
| 618 | */ |
---|
| 619 | bigint *bi_str_import(BI_CTX *ctx, const char *data) |
---|
| 620 | { |
---|
| 621 | int size = strlen(data); |
---|
| 622 | bigint *biR = alloc(ctx, (size+COMP_NUM_NIBBLES-1)/COMP_NUM_NIBBLES); |
---|
| 623 | int i, j = 0, offset = 0; |
---|
| 624 | memset(biR->comps, 0, biR->size*COMP_BYTE_SIZE); |
---|
| 625 | |
---|
| 626 | for (i = size-1; i >= 0; i--) |
---|
| 627 | { |
---|
| 628 | int num = (data[i] <= '9') ? (data[i] - '0') : (data[i] - 'A' + 10); |
---|
| 629 | biR->comps[offset] += num << (j*4); |
---|
| 630 | |
---|
| 631 | if (++j == COMP_NUM_NIBBLES) |
---|
| 632 | { |
---|
| 633 | j = 0; |
---|
| 634 | offset ++; |
---|
| 635 | } |
---|
| 636 | } |
---|
| 637 | |
---|
| 638 | return biR; |
---|
| 639 | } |
---|
| 640 | |
---|
| 641 | void bi_print(const char *label, bigint *x) |
---|
| 642 | { |
---|
| 643 | int i, j; |
---|
| 644 | |
---|
| 645 | if (x == NULL) |
---|
| 646 | { |
---|
| 647 | printf("%s: (null)\n", label); |
---|
| 648 | return; |
---|
| 649 | } |
---|
| 650 | |
---|
| 651 | printf("%s: (size %d)\n", label, x->size); |
---|
| 652 | for (i = x->size-1; i >= 0; i--) |
---|
| 653 | { |
---|
| 654 | for (j = COMP_NUM_NIBBLES-1; j >= 0; j--) |
---|
| 655 | { |
---|
| 656 | comp mask = 0x0f << (j*4); |
---|
| 657 | comp num = (x->comps[i] & mask) >> (j*4); |
---|
| 658 | putc((num <= 9) ? (num + '0') : (num + 'A' - 10), stdout); |
---|
| 659 | } |
---|
| 660 | } |
---|
| 661 | |
---|
| 662 | printf("\n"); |
---|
| 663 | } |
---|
| 664 | #endif |
---|
| 665 | |
---|
| 666 | /** |
---|
| 667 | * @brief Take a bigint and convert it into a byte sequence. |
---|
| 668 | * |
---|
| 669 | * This is useful after a decrypt operation. |
---|
| 670 | * @param ctx [in] The bigint session context. |
---|
| 671 | * @param x [in] The bigint to be converted. |
---|
| 672 | * @param data [out] The converted data as a byte stream. |
---|
| 673 | * @param size [in] The maximum size of the byte stream. Unused bytes will be |
---|
| 674 | * zeroed. |
---|
| 675 | */ |
---|
| 676 | void bi_export(BI_CTX *ctx, bigint *x, uint8_t *data, int size) |
---|
| 677 | { |
---|
| 678 | int i, j, k = size-1; |
---|
| 679 | |
---|
| 680 | check(x); |
---|
| 681 | memset(data, 0, size); /* ensure all leading 0's are cleared */ |
---|
| 682 | |
---|
| 683 | for (i = 0; i < x->size; i++) |
---|
| 684 | { |
---|
| 685 | for (j = 0; j < COMP_BYTE_SIZE; j++) |
---|
| 686 | { |
---|
| 687 | comp mask = 0xff << (j*8); |
---|
| 688 | int num = (x->comps[i] & mask) >> (j*8); |
---|
| 689 | data[k--] = num; |
---|
| 690 | |
---|
| 691 | if (k < 0) |
---|
| 692 | { |
---|
| 693 | break; |
---|
| 694 | } |
---|
| 695 | } |
---|
| 696 | } |
---|
| 697 | |
---|
| 698 | bi_free(ctx, x); |
---|
| 699 | } |
---|
| 700 | |
---|
| 701 | /** |
---|
| 702 | * @brief Pre-calculate some of the expensive steps in reduction. |
---|
| 703 | * |
---|
| 704 | * This function should only be called once (normally when a session starts). |
---|
| 705 | * When the session is over, bi_free_mod() should be called. bi_mod_power() |
---|
| 706 | * relies on this function being called. |
---|
| 707 | * @param ctx [in] The bigint session context. |
---|
| 708 | * @param bim [in] The bigint modulus that will be used. |
---|
| 709 | * @param mod_offset [in] There are three moduluii that can be stored - the |
---|
| 710 | * standard modulus, and its two primes p and q. This offset refers to which |
---|
| 711 | * modulus we are referring to. |
---|
| 712 | * @see bi_free_mod(), bi_mod_power(). |
---|
| 713 | */ |
---|
| 714 | void bi_set_mod(BI_CTX *ctx, bigint *bim, int mod_offset) |
---|
| 715 | { |
---|
| 716 | int k = bim->size; |
---|
| 717 | comp d = (comp)((long_comp)COMP_RADIX/(bim->comps[k-1]+1)); |
---|
| 718 | #ifdef CONFIG_BIGINT_MONTGOMERY |
---|
| 719 | bigint *R, *R2; |
---|
| 720 | #endif |
---|
| 721 | |
---|
| 722 | ctx->bi_mod[mod_offset] = bim; |
---|
| 723 | bi_permanent(ctx->bi_mod[mod_offset]); |
---|
| 724 | ctx->bi_normalised_mod[mod_offset] = bi_int_multiply(ctx, bim, d); |
---|
| 725 | bi_permanent(ctx->bi_normalised_mod[mod_offset]); |
---|
| 726 | |
---|
| 727 | #if defined(CONFIG_BIGINT_MONTGOMERY) |
---|
| 728 | /* set montgomery variables */ |
---|
| 729 | R = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k-1); /* R */ |
---|
| 730 | R2 = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k*2-1); /* R^2 */ |
---|
| 731 | ctx->bi_RR_mod_m[mod_offset] = bi_mod(ctx, R2); /* R^2 mod m */ |
---|
| 732 | ctx->bi_R_mod_m[mod_offset] = bi_mod(ctx, R); /* R mod m */ |
---|
| 733 | |
---|
| 734 | bi_permanent(ctx->bi_RR_mod_m[mod_offset]); |
---|
| 735 | bi_permanent(ctx->bi_R_mod_m[mod_offset]); |
---|
| 736 | |
---|
| 737 | ctx->N0_dash[mod_offset] = modular_inverse(ctx->bi_mod[mod_offset]); |
---|
| 738 | |
---|
| 739 | #elif defined (CONFIG_BIGINT_BARRETT) |
---|
| 740 | ctx->bi_mu[mod_offset] = |
---|
| 741 | bi_divide(ctx, comp_left_shift( |
---|
| 742 | bi_clone(ctx, ctx->bi_radix), k*2-1), ctx->bi_mod[mod_offset], 0); |
---|
| 743 | bi_permanent(ctx->bi_mu[mod_offset]); |
---|
| 744 | #endif |
---|
| 745 | } |
---|
| 746 | |
---|
| 747 | /** |
---|
| 748 | * @brief Used when cleaning various bigints at the end of a session. |
---|
| 749 | * @param ctx [in] The bigint session context. |
---|
| 750 | * @param mod_offset [in] The offset to use. |
---|
| 751 | * @see bi_set_mod(). |
---|
| 752 | */ |
---|
| 753 | void bi_free_mod(BI_CTX *ctx, int mod_offset) |
---|
| 754 | { |
---|
| 755 | bi_depermanent(ctx->bi_mod[mod_offset]); |
---|
| 756 | bi_free(ctx, ctx->bi_mod[mod_offset]); |
---|
| 757 | #if defined (CONFIG_BIGINT_MONTGOMERY) |
---|
| 758 | bi_depermanent(ctx->bi_RR_mod_m[mod_offset]); |
---|
| 759 | bi_depermanent(ctx->bi_R_mod_m[mod_offset]); |
---|
| 760 | bi_free(ctx, ctx->bi_RR_mod_m[mod_offset]); |
---|
| 761 | bi_free(ctx, ctx->bi_R_mod_m[mod_offset]); |
---|
| 762 | #elif defined(CONFIG_BIGINT_BARRETT) |
---|
| 763 | bi_depermanent(ctx->bi_mu[mod_offset]); |
---|
| 764 | bi_free(ctx, ctx->bi_mu[mod_offset]); |
---|
| 765 | #endif |
---|
| 766 | bi_depermanent(ctx->bi_normalised_mod[mod_offset]); |
---|
| 767 | bi_free(ctx, ctx->bi_normalised_mod[mod_offset]); |
---|
| 768 | } |
---|
| 769 | |
---|
| 770 | /** |
---|
| 771 | * Perform a standard multiplication between two bigints. |
---|
| 772 | */ |
---|
| 773 | static bigint *regular_multiply(BI_CTX *ctx, bigint *bia, bigint *bib) |
---|
| 774 | { |
---|
| 775 | int i, j, i_plus_j; |
---|
| 776 | int n = bia->size; |
---|
| 777 | int t = bib->size; |
---|
| 778 | bigint *biR = alloc(ctx, n + t); |
---|
| 779 | comp *sr = biR->comps; |
---|
| 780 | comp *sa = bia->comps; |
---|
| 781 | comp *sb = bib->comps; |
---|
| 782 | |
---|
| 783 | check(bia); |
---|
| 784 | check(bib); |
---|
| 785 | |
---|
| 786 | /* clear things to start with */ |
---|
| 787 | memset(biR->comps, 0, ((n+t)*COMP_BYTE_SIZE)); |
---|
| 788 | i = 0; |
---|
| 789 | |
---|
| 790 | do |
---|
| 791 | { |
---|
| 792 | comp carry = 0; |
---|
| 793 | comp b = *sb++; |
---|
| 794 | i_plus_j = i; |
---|
| 795 | j = 0; |
---|
| 796 | |
---|
| 797 | do |
---|
| 798 | { |
---|
| 799 | long_comp tmp = sr[i_plus_j] + (long_comp)sa[j]*b + carry; |
---|
| 800 | sr[i_plus_j++] = (comp)tmp; /* downsize */ |
---|
| 801 | carry = (comp)(tmp >> COMP_BIT_SIZE); |
---|
| 802 | } while (++j < n); |
---|
| 803 | |
---|
| 804 | sr[i_plus_j] = carry; |
---|
| 805 | } while (++i < t); |
---|
| 806 | |
---|
| 807 | bi_free(ctx, bia); |
---|
| 808 | bi_free(ctx, bib); |
---|
| 809 | return trim(biR); |
---|
| 810 | } |
---|
| 811 | |
---|
| 812 | #ifdef CONFIG_BIGINT_KARATSUBA |
---|
| 813 | /* |
---|
| 814 | * Karatsuba improves on regular multiplication due to only 3 multiplications |
---|
| 815 | * being done instead of 4. The additional additions/subtractions are O(N) |
---|
| 816 | * rather than O(N^2) and so for big numbers it saves on a few operations |
---|
| 817 | */ |
---|
| 818 | static bigint *karatsuba(BI_CTX *ctx, bigint *bia, bigint *bib, int is_square) |
---|
| 819 | { |
---|
| 820 | bigint *x0, *x1; |
---|
| 821 | bigint *p0, *p1, *p2; |
---|
| 822 | int m; |
---|
| 823 | |
---|
| 824 | if (is_square) |
---|
| 825 | { |
---|
| 826 | m = (bia->size + 1)/2; |
---|
| 827 | } |
---|
| 828 | else |
---|
| 829 | { |
---|
| 830 | m = (max(bia->size, bib->size) + 1)/2; |
---|
| 831 | } |
---|
| 832 | |
---|
| 833 | x0 = bi_clone(ctx, bia); |
---|
| 834 | x0->size = m; |
---|
| 835 | x1 = bi_clone(ctx, bia); |
---|
| 836 | comp_right_shift(x1, m); |
---|
| 837 | bi_free(ctx, bia); |
---|
| 838 | |
---|
| 839 | /* work out the 3 partial products */ |
---|
| 840 | if (is_square) |
---|
| 841 | { |
---|
| 842 | p0 = bi_square(ctx, bi_copy(x0)); |
---|
| 843 | p2 = bi_square(ctx, bi_copy(x1)); |
---|
| 844 | p1 = bi_square(ctx, bi_add(ctx, x0, x1)); |
---|
| 845 | } |
---|
| 846 | else /* normal multiply */ |
---|
| 847 | { |
---|
| 848 | bigint *y0, *y1; |
---|
| 849 | y0 = bi_clone(ctx, bib); |
---|
| 850 | y0->size = m; |
---|
| 851 | y1 = bi_clone(ctx, bib); |
---|
| 852 | comp_right_shift(y1, m); |
---|
| 853 | bi_free(ctx, bib); |
---|
| 854 | |
---|
| 855 | p0 = bi_multiply(ctx, bi_copy(x0), bi_copy(y0)); |
---|
| 856 | p2 = bi_multiply(ctx, bi_copy(x1), bi_copy(y1)); |
---|
| 857 | p1 = bi_multiply(ctx, bi_add(ctx, x0, x1), bi_add(ctx, y0, y1)); |
---|
| 858 | } |
---|
| 859 | |
---|
| 860 | p1 = bi_subtract(ctx, |
---|
| 861 | bi_subtract(ctx, p1, bi_copy(p2), NULL), bi_copy(p0), NULL); |
---|
| 862 | |
---|
| 863 | comp_left_shift(p1, m); |
---|
| 864 | comp_left_shift(p2, 2*m); |
---|
| 865 | return bi_add(ctx, p1, bi_add(ctx, p0, p2)); |
---|
| 866 | } |
---|
| 867 | #endif |
---|
| 868 | |
---|
| 869 | /** |
---|
| 870 | * @brief Perform a multiplication operation between two bigints. |
---|
| 871 | * @param ctx [in] The bigint session context. |
---|
| 872 | * @param bia [in] A bigint. |
---|
| 873 | * @param bib [in] Another bigint. |
---|
| 874 | * @return The result of the multiplication. |
---|
| 875 | */ |
---|
| 876 | bigint *bi_multiply(BI_CTX *ctx, bigint *bia, bigint *bib) |
---|
| 877 | { |
---|
| 878 | check(bia); |
---|
| 879 | check(bib); |
---|
| 880 | |
---|
| 881 | #ifdef CONFIG_BIGINT_KARATSUBA |
---|
| 882 | if (min(bia->size, bib->size) < MUL_KARATSUBA_THRESH) |
---|
| 883 | { |
---|
| 884 | return regular_multiply(ctx, bia, bib); |
---|
| 885 | } |
---|
| 886 | |
---|
| 887 | return karatsuba(ctx, bia, bib, 0); |
---|
| 888 | #else |
---|
| 889 | return regular_multiply(ctx, bia, bib); |
---|
| 890 | #endif |
---|
| 891 | } |
---|
| 892 | |
---|
| 893 | #ifdef CONFIG_BIGINT_SQUARE |
---|
| 894 | /* |
---|
| 895 | * Perform the actual square operion. It takes into account overflow. |
---|
| 896 | */ |
---|
| 897 | static bigint *regular_square(BI_CTX *ctx, bigint *bi) |
---|
| 898 | { |
---|
| 899 | int t = bi->size; |
---|
| 900 | int i = 0, j; |
---|
| 901 | bigint *biR = alloc(ctx, t*2); |
---|
| 902 | comp *w = biR->comps; |
---|
| 903 | comp *x = bi->comps; |
---|
| 904 | comp carry; |
---|
| 905 | |
---|
| 906 | memset(w, 0, biR->size*COMP_BYTE_SIZE); |
---|
| 907 | |
---|
| 908 | do |
---|
| 909 | { |
---|
| 910 | long_comp tmp = w[2*i] + (long_comp)x[i]*x[i]; |
---|
| 911 | comp u = 0; |
---|
| 912 | w[2*i] = (comp)tmp; |
---|
| 913 | carry = (comp)(tmp >> COMP_BIT_SIZE); |
---|
| 914 | |
---|
| 915 | for (j = i+1; j < t; j++) |
---|
| 916 | { |
---|
| 917 | long_comp xx = (long_comp)x[i]*x[j]; |
---|
| 918 | long_comp blob = (long_comp)w[i+j]+carry; |
---|
| 919 | |
---|
| 920 | if (u) /* previous overflow */ |
---|
| 921 | { |
---|
| 922 | blob += COMP_RADIX; |
---|
| 923 | } |
---|
| 924 | |
---|
| 925 | u = 0; |
---|
| 926 | if (xx & COMP_BIG_MSB) /* check for overflow */ |
---|
| 927 | { |
---|
| 928 | u = 1; |
---|
| 929 | } |
---|
| 930 | |
---|
| 931 | tmp = 2*xx + blob; |
---|
| 932 | w[i+j] = (comp)tmp; |
---|
| 933 | carry = (comp)(tmp >> COMP_BIT_SIZE); |
---|
| 934 | } |
---|
| 935 | |
---|
| 936 | w[i+t] += carry; |
---|
| 937 | |
---|
| 938 | if (u) |
---|
| 939 | { |
---|
| 940 | w[i+t+1] = 1; /* add carry */ |
---|
| 941 | } |
---|
| 942 | } while (++i < t); |
---|
| 943 | |
---|
| 944 | bi_free(ctx, bi); |
---|
| 945 | return trim(biR); |
---|
| 946 | } |
---|
| 947 | |
---|
| 948 | /** |
---|
| 949 | * @brief Perform a square operation on a bigint. |
---|
| 950 | * @param ctx [in] The bigint session context. |
---|
| 951 | * @param bia [in] A bigint. |
---|
| 952 | * @return The result of the multiplication. |
---|
| 953 | */ |
---|
| 954 | bigint *bi_square(BI_CTX *ctx, bigint *bia) |
---|
| 955 | { |
---|
| 956 | check(bia); |
---|
| 957 | |
---|
| 958 | #ifdef CONFIG_BIGINT_KARATSUBA |
---|
| 959 | if (bia->size < SQU_KARATSUBA_THRESH) |
---|
| 960 | { |
---|
| 961 | return regular_square(ctx, bia); |
---|
| 962 | } |
---|
| 963 | |
---|
| 964 | return karatsuba(ctx, bia, NULL, 1); |
---|
| 965 | #else |
---|
| 966 | return regular_square(ctx, bia); |
---|
| 967 | #endif |
---|
| 968 | } |
---|
| 969 | #endif |
---|
| 970 | |
---|
| 971 | /** |
---|
| 972 | * @brief Compare two bigints. |
---|
| 973 | * @param bia [in] A bigint. |
---|
| 974 | * @param bib [in] Another bigint. |
---|
| 975 | * @return -1 if smaller, 1 if larger and 0 if equal. |
---|
| 976 | */ |
---|
| 977 | int bi_compare(bigint *bia, bigint *bib) |
---|
| 978 | { |
---|
| 979 | int r, i; |
---|
| 980 | |
---|
| 981 | check(bia); |
---|
| 982 | check(bib); |
---|
| 983 | |
---|
| 984 | if (bia->size > bib->size) |
---|
| 985 | r = 1; |
---|
| 986 | else if (bia->size < bib->size) |
---|
| 987 | r = -1; |
---|
| 988 | else |
---|
| 989 | { |
---|
| 990 | comp *a = bia->comps; |
---|
| 991 | comp *b = bib->comps; |
---|
| 992 | |
---|
| 993 | /* Same number of components. Compare starting from the high end |
---|
| 994 | * and working down. */ |
---|
| 995 | r = 0; |
---|
| 996 | i = bia->size - 1; |
---|
| 997 | |
---|
| 998 | do |
---|
| 999 | { |
---|
| 1000 | if (a[i] > b[i]) |
---|
| 1001 | { |
---|
| 1002 | r = 1; |
---|
| 1003 | break; |
---|
| 1004 | } |
---|
| 1005 | else if (a[i] < b[i]) |
---|
| 1006 | { |
---|
| 1007 | r = -1; |
---|
| 1008 | break; |
---|
| 1009 | } |
---|
| 1010 | } while (--i >= 0); |
---|
| 1011 | } |
---|
| 1012 | |
---|
| 1013 | return r; |
---|
| 1014 | } |
---|
| 1015 | |
---|
| 1016 | /* |
---|
| 1017 | * Allocate and zero more components. Does not consume bi. |
---|
| 1018 | */ |
---|
| 1019 | static void more_comps(bigint *bi, int n) |
---|
| 1020 | { |
---|
| 1021 | if (n > bi->max_comps) |
---|
| 1022 | { |
---|
| 1023 | bi->max_comps = max(bi->max_comps * 2, n); |
---|
| 1024 | bi->comps = (comp*)realloc(bi->comps, bi->max_comps * COMP_BYTE_SIZE); |
---|
| 1025 | } |
---|
| 1026 | |
---|
| 1027 | if (n > bi->size) |
---|
| 1028 | { |
---|
| 1029 | memset(&bi->comps[bi->size], 0, (n-bi->size)*COMP_BYTE_SIZE); |
---|
| 1030 | } |
---|
| 1031 | |
---|
| 1032 | bi->size = n; |
---|
| 1033 | } |
---|
| 1034 | |
---|
| 1035 | /* |
---|
| 1036 | * Make a new empty bigint. It may just use an old one if one is available. |
---|
| 1037 | * Otherwise get one off the heap. |
---|
| 1038 | */ |
---|
| 1039 | static bigint *alloc(BI_CTX *ctx, int size) |
---|
| 1040 | { |
---|
| 1041 | bigint *biR; |
---|
| 1042 | |
---|
| 1043 | /* Can we recycle an old bigint? */ |
---|
| 1044 | if (ctx->free_list != NULL) |
---|
| 1045 | { |
---|
| 1046 | biR = ctx->free_list; |
---|
| 1047 | ctx->free_list = biR->next; |
---|
| 1048 | ctx->free_count--; |
---|
| 1049 | |
---|
| 1050 | if (biR->refs != 0) |
---|
| 1051 | { |
---|
| 1052 | #ifdef CONFIG_SSL_FULL_MODE |
---|
| 1053 | printf("alloc: refs was not 0\n"); |
---|
| 1054 | #endif |
---|
| 1055 | abort(); /* create a stack trace from a core dump */ |
---|
| 1056 | } |
---|
| 1057 | |
---|
| 1058 | more_comps(biR, size); |
---|
| 1059 | } |
---|
| 1060 | else |
---|
| 1061 | { |
---|
| 1062 | /* No free bigints available - create a new one. */ |
---|
| 1063 | biR = (bigint *)malloc(sizeof(bigint)); |
---|
| 1064 | biR->comps = (comp*)malloc(size * COMP_BYTE_SIZE); |
---|
| 1065 | biR->max_comps = size; /* give some space to spare */ |
---|
| 1066 | } |
---|
| 1067 | |
---|
| 1068 | biR->size = size; |
---|
| 1069 | biR->refs = 1; |
---|
| 1070 | biR->next = NULL; |
---|
| 1071 | ctx->active_count++; |
---|
| 1072 | return biR; |
---|
| 1073 | } |
---|
| 1074 | |
---|
| 1075 | /* |
---|
| 1076 | * Work out the highest '1' bit in an exponent. Used when doing sliding-window |
---|
| 1077 | * exponentiation. |
---|
| 1078 | */ |
---|
| 1079 | static int find_max_exp_index(bigint *biexp) |
---|
| 1080 | { |
---|
| 1081 | int i = COMP_BIT_SIZE-1; |
---|
| 1082 | comp shift = COMP_RADIX/2; |
---|
| 1083 | comp test = biexp->comps[biexp->size-1]; /* assume no leading zeroes */ |
---|
| 1084 | |
---|
| 1085 | check(biexp); |
---|
| 1086 | |
---|
| 1087 | do |
---|
| 1088 | { |
---|
| 1089 | if (test & shift) |
---|
| 1090 | { |
---|
| 1091 | return i+(biexp->size-1)*COMP_BIT_SIZE; |
---|
| 1092 | } |
---|
| 1093 | |
---|
| 1094 | shift >>= 1; |
---|
| 1095 | } while (--i != 0); |
---|
| 1096 | |
---|
| 1097 | return -1; /* error - must have been a leading 0 */ |
---|
| 1098 | } |
---|
| 1099 | |
---|
| 1100 | /* |
---|
| 1101 | * Is a particular bit is an exponent 1 or 0? Used when doing sliding-window |
---|
| 1102 | * exponentiation. |
---|
| 1103 | */ |
---|
| 1104 | static int exp_bit_is_one(bigint *biexp, int offset) |
---|
| 1105 | { |
---|
| 1106 | comp test = biexp->comps[offset / COMP_BIT_SIZE]; |
---|
| 1107 | int num_shifts = offset % COMP_BIT_SIZE; |
---|
| 1108 | comp shift = 1; |
---|
| 1109 | int i; |
---|
| 1110 | |
---|
| 1111 | check(biexp); |
---|
| 1112 | |
---|
| 1113 | for (i = 0; i < num_shifts; i++) |
---|
| 1114 | { |
---|
| 1115 | shift <<= 1; |
---|
| 1116 | } |
---|
| 1117 | |
---|
| 1118 | return test & shift; |
---|
| 1119 | } |
---|
| 1120 | |
---|
| 1121 | #ifdef CONFIG_BIGINT_CHECK_ON |
---|
| 1122 | /* |
---|
| 1123 | * Perform a sanity check on bi. |
---|
| 1124 | */ |
---|
| 1125 | static void check(const bigint *bi) |
---|
| 1126 | { |
---|
| 1127 | if (bi->refs <= 0) |
---|
| 1128 | { |
---|
| 1129 | printf("check: zero or negative refs in bigint\n"); |
---|
| 1130 | abort(); |
---|
| 1131 | } |
---|
| 1132 | |
---|
| 1133 | if (bi->next != NULL) |
---|
| 1134 | { |
---|
| 1135 | printf("check: attempt to use a bigint from " |
---|
| 1136 | "the free list\n"); |
---|
| 1137 | abort(); |
---|
| 1138 | } |
---|
| 1139 | } |
---|
| 1140 | #endif |
---|
| 1141 | |
---|
| 1142 | /* |
---|
| 1143 | * Delete any leading 0's (and allow for 0). |
---|
| 1144 | */ |
---|
| 1145 | static bigint *trim(bigint *bi) |
---|
| 1146 | { |
---|
| 1147 | check(bi); |
---|
| 1148 | |
---|
| 1149 | while (bi->comps[bi->size-1] == 0 && bi->size > 1) |
---|
| 1150 | { |
---|
| 1151 | bi->size--; |
---|
| 1152 | } |
---|
| 1153 | |
---|
| 1154 | return bi; |
---|
| 1155 | } |
---|
| 1156 | |
---|
| 1157 | #if defined(CONFIG_BIGINT_MONTGOMERY) |
---|
| 1158 | /** |
---|
| 1159 | * @brief Perform a single montgomery reduction. |
---|
| 1160 | * @param ctx [in] The bigint session context. |
---|
| 1161 | * @param bixy [in] A bigint. |
---|
| 1162 | * @return The result of the montgomery reduction. |
---|
| 1163 | */ |
---|
| 1164 | bigint *bi_mont(BI_CTX *ctx, bigint *bixy) |
---|
| 1165 | { |
---|
| 1166 | int i = 0, n; |
---|
| 1167 | uint8_t mod_offset = ctx->mod_offset; |
---|
| 1168 | bigint *bim = ctx->bi_mod[mod_offset]; |
---|
| 1169 | comp mod_inv = ctx->N0_dash[mod_offset]; |
---|
| 1170 | |
---|
| 1171 | check(bixy); |
---|
| 1172 | |
---|
| 1173 | if (ctx->use_classical) /* just use classical instead */ |
---|
| 1174 | { |
---|
| 1175 | return bi_mod(ctx, bixy); |
---|
| 1176 | } |
---|
| 1177 | |
---|
| 1178 | n = bim->size; |
---|
| 1179 | |
---|
| 1180 | do |
---|
| 1181 | { |
---|
| 1182 | bixy = bi_add(ctx, bixy, comp_left_shift( |
---|
| 1183 | bi_int_multiply(ctx, bim, bixy->comps[i]*mod_inv), i)); |
---|
| 1184 | } while (++i < n); |
---|
| 1185 | |
---|
| 1186 | comp_right_shift(bixy, n); |
---|
| 1187 | |
---|
| 1188 | if (bi_compare(bixy, bim) >= 0) |
---|
| 1189 | { |
---|
| 1190 | bixy = bi_subtract(ctx, bixy, bim, NULL); |
---|
| 1191 | } |
---|
| 1192 | |
---|
| 1193 | return bixy; |
---|
| 1194 | } |
---|
| 1195 | |
---|
| 1196 | #elif defined(CONFIG_BIGINT_BARRETT) |
---|
| 1197 | /* |
---|
| 1198 | * Stomp on the most significant components to give the illusion of a "mod base |
---|
| 1199 | * radix" operation |
---|
| 1200 | */ |
---|
| 1201 | static bigint *comp_mod(bigint *bi, int mod) |
---|
| 1202 | { |
---|
| 1203 | check(bi); |
---|
| 1204 | |
---|
| 1205 | if (bi->size > mod) |
---|
| 1206 | { |
---|
| 1207 | bi->size = mod; |
---|
| 1208 | } |
---|
| 1209 | |
---|
| 1210 | return bi; |
---|
| 1211 | } |
---|
| 1212 | |
---|
| 1213 | /* |
---|
| 1214 | * Barrett reduction has no need for some parts of the product, so ignore bits |
---|
| 1215 | * of the multiply. This routine gives Barrett its big performance |
---|
| 1216 | * improvements over Classical/Montgomery reduction methods. |
---|
| 1217 | */ |
---|
| 1218 | static bigint *partial_multiply(BI_CTX *ctx, bigint *bia, bigint *bib, |
---|
| 1219 | int inner_partial, int outer_partial) |
---|
| 1220 | { |
---|
| 1221 | int i = 0, j, n = bia->size, t = bib->size; |
---|
| 1222 | bigint *biR; |
---|
| 1223 | comp carry; |
---|
| 1224 | comp *sr, *sa, *sb; |
---|
| 1225 | |
---|
| 1226 | check(bia); |
---|
| 1227 | check(bib); |
---|
| 1228 | |
---|
| 1229 | biR = alloc(ctx, n + t); |
---|
| 1230 | sa = bia->comps; |
---|
| 1231 | sb = bib->comps; |
---|
| 1232 | sr = biR->comps; |
---|
| 1233 | |
---|
| 1234 | if (inner_partial) |
---|
| 1235 | { |
---|
| 1236 | memset(sr, 0, inner_partial*COMP_BYTE_SIZE); |
---|
| 1237 | } |
---|
| 1238 | else /* outer partial */ |
---|
| 1239 | { |
---|
| 1240 | if (n < outer_partial || t < outer_partial) /* should we bother? */ |
---|
| 1241 | { |
---|
| 1242 | bi_free(ctx, bia); |
---|
| 1243 | bi_free(ctx, bib); |
---|
| 1244 | biR->comps[0] = 0; /* return 0 */ |
---|
| 1245 | biR->size = 1; |
---|
| 1246 | return biR; |
---|
| 1247 | } |
---|
| 1248 | |
---|
| 1249 | memset(&sr[outer_partial], 0, (n+t-outer_partial)*COMP_BYTE_SIZE); |
---|
| 1250 | } |
---|
| 1251 | |
---|
| 1252 | do |
---|
| 1253 | { |
---|
| 1254 | comp *a = sa; |
---|
| 1255 | comp b = *sb++; |
---|
| 1256 | long_comp tmp; |
---|
| 1257 | int i_plus_j = i; |
---|
| 1258 | carry = 0; |
---|
| 1259 | j = n; |
---|
| 1260 | |
---|
| 1261 | if (outer_partial && i_plus_j < outer_partial) |
---|
| 1262 | { |
---|
| 1263 | i_plus_j = outer_partial; |
---|
| 1264 | a = &sa[outer_partial-i]; |
---|
| 1265 | j = n-(outer_partial-i); |
---|
| 1266 | } |
---|
| 1267 | |
---|
| 1268 | do |
---|
| 1269 | { |
---|
| 1270 | if (inner_partial && i_plus_j >= inner_partial) |
---|
| 1271 | { |
---|
| 1272 | break; |
---|
| 1273 | } |
---|
| 1274 | |
---|
| 1275 | tmp = sr[i_plus_j] + ((long_comp)*a++)*b + carry; |
---|
| 1276 | sr[i_plus_j++] = (comp)tmp; /* downsize */ |
---|
| 1277 | carry = (comp)(tmp >> COMP_BIT_SIZE); |
---|
| 1278 | } while (--j != 0); |
---|
| 1279 | |
---|
| 1280 | sr[i_plus_j] = carry; |
---|
| 1281 | } while (++i < t); |
---|
| 1282 | |
---|
| 1283 | bi_free(ctx, bia); |
---|
| 1284 | bi_free(ctx, bib); |
---|
| 1285 | return trim(biR); |
---|
| 1286 | } |
---|
| 1287 | |
---|
| 1288 | /** |
---|
| 1289 | * @brief Perform a single Barrett reduction. |
---|
| 1290 | * @param ctx [in] The bigint session context. |
---|
| 1291 | * @param bi [in] A bigint. |
---|
| 1292 | * @return The result of the Barrett reduction. |
---|
| 1293 | */ |
---|
| 1294 | bigint *bi_barrett(BI_CTX *ctx, bigint *bi) |
---|
| 1295 | { |
---|
| 1296 | bigint *q1, *q2, *q3, *r1, *r2, *r; |
---|
| 1297 | uint8_t mod_offset = ctx->mod_offset; |
---|
| 1298 | bigint *bim = ctx->bi_mod[mod_offset]; |
---|
| 1299 | int k = bim->size; |
---|
| 1300 | |
---|
| 1301 | check(bi); |
---|
| 1302 | check(bim); |
---|
| 1303 | |
---|
| 1304 | /* use Classical method instead - Barrett cannot help here */ |
---|
| 1305 | if (bi->size > k*2) |
---|
| 1306 | { |
---|
| 1307 | return bi_mod(ctx, bi); |
---|
| 1308 | } |
---|
| 1309 | |
---|
| 1310 | q1 = comp_right_shift(bi_clone(ctx, bi), k-1); |
---|
| 1311 | |
---|
| 1312 | /* do outer partial multiply */ |
---|
| 1313 | q2 = partial_multiply(ctx, q1, ctx->bi_mu[mod_offset], 0, k-1); |
---|
| 1314 | q3 = comp_right_shift(q2, k+1); |
---|
| 1315 | r1 = comp_mod(bi, k+1); |
---|
| 1316 | |
---|
| 1317 | /* do inner partial multiply */ |
---|
| 1318 | r2 = comp_mod(partial_multiply(ctx, q3, bim, k+1, 0), k+1); |
---|
| 1319 | r = bi_subtract(ctx, r1, r2, NULL); |
---|
| 1320 | |
---|
| 1321 | /* if (r >= m) r = r - m; */ |
---|
| 1322 | if (bi_compare(r, bim) >= 0) |
---|
| 1323 | { |
---|
| 1324 | r = bi_subtract(ctx, r, bim, NULL); |
---|
| 1325 | } |
---|
| 1326 | |
---|
| 1327 | return r; |
---|
| 1328 | } |
---|
| 1329 | #endif /* CONFIG_BIGINT_BARRETT */ |
---|
| 1330 | |
---|
| 1331 | #ifdef CONFIG_BIGINT_SLIDING_WINDOW |
---|
| 1332 | /* |
---|
| 1333 | * Work out g1, g3, g5, g7... etc for the sliding-window algorithm |
---|
| 1334 | */ |
---|
| 1335 | static void precompute_slide_window(BI_CTX *ctx, int window, bigint *g1) |
---|
| 1336 | { |
---|
| 1337 | int k = 1, i; |
---|
| 1338 | bigint *g2; |
---|
| 1339 | |
---|
| 1340 | for (i = 0; i < window-1; i++) /* compute 2^(window-1) */ |
---|
| 1341 | { |
---|
| 1342 | k <<= 1; |
---|
| 1343 | } |
---|
| 1344 | |
---|
| 1345 | ctx->g = (bigint **)malloc(k*sizeof(bigint *)); |
---|
| 1346 | ctx->g[0] = bi_clone(ctx, g1); |
---|
| 1347 | bi_permanent(ctx->g[0]); |
---|
| 1348 | g2 = bi_residue(ctx, bi_square(ctx, ctx->g[0])); /* g^2 */ |
---|
| 1349 | |
---|
| 1350 | for (i = 1; i < k; i++) |
---|
| 1351 | { |
---|
| 1352 | ctx->g[i] = bi_residue(ctx, bi_multiply(ctx, ctx->g[i-1], bi_copy(g2))); |
---|
| 1353 | bi_permanent(ctx->g[i]); |
---|
| 1354 | } |
---|
| 1355 | |
---|
| 1356 | bi_free(ctx, g2); |
---|
| 1357 | ctx->window = k; |
---|
| 1358 | } |
---|
| 1359 | #endif |
---|
| 1360 | |
---|
| 1361 | /** |
---|
| 1362 | * @brief Perform a modular exponentiation. |
---|
| 1363 | * |
---|
| 1364 | * This function requires bi_set_mod() to have been called previously. This is |
---|
| 1365 | * one of the optimisations used for performance. |
---|
| 1366 | * @param ctx [in] The bigint session context. |
---|
| 1367 | * @param bi [in] The bigint on which to perform the mod power operation. |
---|
| 1368 | * @param biexp [in] The bigint exponent. |
---|
| 1369 | * @see bi_set_mod(). |
---|
| 1370 | */ |
---|
| 1371 | bigint *bi_mod_power(BI_CTX *ctx, bigint *bi, bigint *biexp) |
---|
| 1372 | { |
---|
| 1373 | int i = find_max_exp_index(biexp), j, window_size = 1; |
---|
| 1374 | bigint *biR = int_to_bi(ctx, 1); |
---|
| 1375 | |
---|
| 1376 | #if defined(CONFIG_BIGINT_MONTGOMERY) |
---|
| 1377 | uint8_t mod_offset = ctx->mod_offset; |
---|
| 1378 | if (!ctx->use_classical) |
---|
| 1379 | { |
---|
| 1380 | /* preconvert */ |
---|
| 1381 | bi = bi_mont(ctx, |
---|
| 1382 | bi_multiply(ctx, bi, ctx->bi_RR_mod_m[mod_offset])); /* x' */ |
---|
| 1383 | bi_free(ctx, biR); |
---|
| 1384 | biR = ctx->bi_R_mod_m[mod_offset]; /* A */ |
---|
| 1385 | } |
---|
| 1386 | #endif |
---|
| 1387 | |
---|
| 1388 | check(bi); |
---|
| 1389 | check(biexp); |
---|
| 1390 | |
---|
| 1391 | #ifdef CONFIG_BIGINT_SLIDING_WINDOW |
---|
| 1392 | for (j = i; j > 32; j /= 5) /* work out an optimum size */ |
---|
| 1393 | window_size++; |
---|
| 1394 | |
---|
| 1395 | /* work out the slide constants */ |
---|
| 1396 | precompute_slide_window(ctx, window_size, bi); |
---|
| 1397 | #else /* just one constant */ |
---|
| 1398 | ctx->g = (bigint **)malloc(sizeof(bigint *)); |
---|
| 1399 | ctx->g[0] = bi_clone(ctx, bi); |
---|
| 1400 | ctx->window = 1; |
---|
| 1401 | bi_permanent(ctx->g[0]); |
---|
| 1402 | #endif |
---|
| 1403 | |
---|
| 1404 | /* if sliding-window is off, then only one bit will be done at a time and |
---|
| 1405 | * will reduce to standard left-to-right exponentiation */ |
---|
| 1406 | do |
---|
| 1407 | { |
---|
| 1408 | if (exp_bit_is_one(biexp, i)) |
---|
| 1409 | { |
---|
| 1410 | int l = i-window_size+1; |
---|
| 1411 | int part_exp = 0; |
---|
| 1412 | |
---|
| 1413 | if (l < 0) /* LSB of exponent will always be 1 */ |
---|
| 1414 | l = 0; |
---|
| 1415 | else |
---|
| 1416 | { |
---|
| 1417 | while (exp_bit_is_one(biexp, l) == 0) |
---|
| 1418 | l++; /* go back up */ |
---|
| 1419 | } |
---|
| 1420 | |
---|
| 1421 | /* build up the section of the exponent */ |
---|
| 1422 | for (j = i; j >= l; j--) |
---|
| 1423 | { |
---|
| 1424 | biR = bi_residue(ctx, bi_square(ctx, biR)); |
---|
| 1425 | if (exp_bit_is_one(biexp, j)) |
---|
| 1426 | part_exp++; |
---|
| 1427 | |
---|
| 1428 | if (j != l) |
---|
| 1429 | part_exp <<= 1; |
---|
| 1430 | } |
---|
| 1431 | |
---|
| 1432 | part_exp = (part_exp-1)/2; /* adjust for array */ |
---|
| 1433 | biR = bi_residue(ctx, bi_multiply(ctx, biR, ctx->g[part_exp])); |
---|
| 1434 | i = l-1; |
---|
| 1435 | } |
---|
| 1436 | else /* square it */ |
---|
| 1437 | { |
---|
| 1438 | biR = bi_residue(ctx, bi_square(ctx, biR)); |
---|
| 1439 | i--; |
---|
| 1440 | } |
---|
| 1441 | } while (i >= 0); |
---|
| 1442 | |
---|
| 1443 | /* cleanup */ |
---|
| 1444 | for (i = 0; i < ctx->window; i++) |
---|
| 1445 | { |
---|
| 1446 | bi_depermanent(ctx->g[i]); |
---|
| 1447 | bi_free(ctx, ctx->g[i]); |
---|
| 1448 | } |
---|
| 1449 | |
---|
| 1450 | free(ctx->g); |
---|
| 1451 | bi_free(ctx, bi); |
---|
| 1452 | bi_free(ctx, biexp); |
---|
| 1453 | #if defined CONFIG_BIGINT_MONTGOMERY |
---|
| 1454 | return ctx->use_classical ? biR : bi_mont(ctx, biR); /* convert back */ |
---|
| 1455 | #else /* CONFIG_BIGINT_CLASSICAL or CONFIG_BIGINT_BARRETT */ |
---|
| 1456 | return biR; |
---|
| 1457 | #endif |
---|
| 1458 | } |
---|
| 1459 | |
---|
| 1460 | #ifdef CONFIG_SSL_CERT_VERIFICATION |
---|
| 1461 | /** |
---|
| 1462 | * @brief Perform a modular exponentiation using a temporary modulus. |
---|
| 1463 | * |
---|
| 1464 | * We need this function to check the signatures of certificates. The modulus |
---|
| 1465 | * of this function is temporary as it's just used for authentication. |
---|
| 1466 | * @param ctx [in] The bigint session context. |
---|
| 1467 | * @param bi [in] The bigint to perform the exp/mod. |
---|
| 1468 | * @param bim [in] The temporary modulus. |
---|
| 1469 | * @param biexp [in] The bigint exponent. |
---|
| 1470 | * @see bi_set_mod(). |
---|
| 1471 | */ |
---|
| 1472 | bigint *bi_mod_power2(BI_CTX *ctx, bigint *bi, bigint *bim, bigint *biexp) |
---|
| 1473 | { |
---|
| 1474 | bigint *biR, *tmp_biR; |
---|
| 1475 | |
---|
| 1476 | /* Set up a temporary bigint context and transfer what we need between |
---|
| 1477 | * them. We need to do this since we want to keep the original modulus |
---|
| 1478 | * which is already in this context. This operation is only called when |
---|
| 1479 | * doing peer verification, and so is not expensive :-) */ |
---|
| 1480 | BI_CTX *tmp_ctx = bi_initialize(); |
---|
| 1481 | bi_set_mod(tmp_ctx, bi_clone(tmp_ctx, bim), BIGINT_M_OFFSET); |
---|
| 1482 | tmp_biR = bi_mod_power(tmp_ctx, |
---|
| 1483 | bi_clone(tmp_ctx, bi), |
---|
| 1484 | bi_clone(tmp_ctx, biexp)); |
---|
| 1485 | biR = bi_clone(ctx, tmp_biR); |
---|
| 1486 | bi_free(tmp_ctx, tmp_biR); |
---|
| 1487 | bi_free_mod(tmp_ctx, BIGINT_M_OFFSET); |
---|
| 1488 | bi_terminate(tmp_ctx); |
---|
| 1489 | |
---|
| 1490 | bi_free(ctx, bi); |
---|
| 1491 | bi_free(ctx, bim); |
---|
| 1492 | bi_free(ctx, biexp); |
---|
| 1493 | return biR; |
---|
| 1494 | } |
---|
| 1495 | #endif |
---|
| 1496 | /** @} */ |
---|