1 | /* |
---|
2 | * Copyright(C) 2006 Cameron Rich |
---|
3 | * |
---|
4 | * This library is free software; you can redistribute it and/or modify |
---|
5 | * it under the terms of the GNU Lesser General Public License as published by |
---|
6 | * the Free Software Foundation; either version 2.1 of the License, or |
---|
7 | * (at your option) any later version. |
---|
8 | * |
---|
9 | * This library is distributed in the hope that it will be useful, |
---|
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
12 | * GNU Lesser General Public License for more details. |
---|
13 | * |
---|
14 | * You should have received a copy of the GNU Lesser General Public License |
---|
15 | * along with this library; if not, write to the Free Software |
---|
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
---|
17 | */ |
---|
18 | |
---|
19 | /** |
---|
20 | * @defgroup bigint_api Big Integer API |
---|
21 | * @brief The bigint implementation as used by the axTLS project. |
---|
22 | * |
---|
23 | * The bigint library is for RSA encryption/decryption as well as signing. |
---|
24 | * This code tries to minimise use of malloc/free by maintaining a small |
---|
25 | * cache. A bigint context may maintain state by being made "permanent". |
---|
26 | * It be be later released with a bi_depermanent() and bi_free() call. |
---|
27 | * |
---|
28 | * It supports the following reduction techniques: |
---|
29 | * - Classical |
---|
30 | * - Barrett |
---|
31 | * - Montgomery |
---|
32 | * |
---|
33 | * It also implements the following: |
---|
34 | * - Karatsuba multiplication |
---|
35 | * - Squaring |
---|
36 | * - Sliding window exponentiation |
---|
37 | * - Chinese Remainder Theorem (implemented in rsa.c). |
---|
38 | * |
---|
39 | * All the algorithms used are pretty standard, and designed for different |
---|
40 | * data bus sizes. Negative numbers are not dealt with at all, so a subtraction |
---|
41 | * may need to be tested for negativity. |
---|
42 | * |
---|
43 | * This library steals some ideas from Jef Poskanzer |
---|
44 | * <http://cs.marlboro.edu/term/cs-fall02/algorithms/crypto/RSA/bigint> |
---|
45 | * and GMP <http://www.swox.com/gmp>. It gets most of its implementation |
---|
46 | * detail from "The Handbook of Applied Cryptography" |
---|
47 | * <http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf> |
---|
48 | * @{ |
---|
49 | */ |
---|
50 | |
---|
51 | #include <stdlib.h> |
---|
52 | #include <limits.h> |
---|
53 | #include <string.h> |
---|
54 | #include <stdio.h> |
---|
55 | #include <time.h> |
---|
56 | #include "bigint.h" |
---|
57 | #include "crypto.h" |
---|
58 | |
---|
59 | static bigint *bi_int_multiply(BI_CTX *ctx, bigint *bi, comp i); |
---|
60 | static bigint *bi_int_divide(BI_CTX *ctx, bigint *biR, comp denom); |
---|
61 | static bigint __malloc *alloc(BI_CTX *ctx, int size); |
---|
62 | static bigint *trim(bigint *bi); |
---|
63 | static void more_comps(bigint *bi, int n); |
---|
64 | #if defined(CONFIG_BIGINT_KARATSUBA) || defined(CONFIG_BIGINT_BARRETT) || \ |
---|
65 | defined(CONFIG_BIGINT_MONTGOMERY) |
---|
66 | static bigint *comp_right_shift(bigint *biR, int num_shifts); |
---|
67 | static bigint *comp_left_shift(bigint *biR, int num_shifts); |
---|
68 | #endif |
---|
69 | |
---|
70 | #ifdef CONFIG_BIGINT_CHECK_ON |
---|
71 | static void check(const bigint *bi); |
---|
72 | #endif |
---|
73 | |
---|
74 | /** |
---|
75 | * @brief Start a new bigint context. |
---|
76 | * @return A bigint context. |
---|
77 | */ |
---|
78 | BI_CTX *bi_initialize(void) |
---|
79 | { |
---|
80 | /* calloc() sets everything to zero */ |
---|
81 | BI_CTX *ctx = (BI_CTX *)calloc(1, sizeof(BI_CTX)); |
---|
82 | |
---|
83 | /* the radix */ |
---|
84 | ctx->bi_radix = alloc(ctx, 2); |
---|
85 | ctx->bi_radix->comps[0] = 0; |
---|
86 | ctx->bi_radix->comps[1] = 1; |
---|
87 | bi_permanent(ctx->bi_radix); |
---|
88 | return ctx; |
---|
89 | } |
---|
90 | |
---|
91 | /** |
---|
92 | * @brief Close the bigint context and free any resources. |
---|
93 | * |
---|
94 | * Free up any used memory - a check is done if all objects were not |
---|
95 | * properly freed. |
---|
96 | * @param ctx [in] The bigint session context. |
---|
97 | */ |
---|
98 | void bi_terminate(BI_CTX *ctx) |
---|
99 | { |
---|
100 | bigint *p, *pn; |
---|
101 | |
---|
102 | bi_depermanent(ctx->bi_radix); |
---|
103 | bi_free(ctx, ctx->bi_radix); |
---|
104 | |
---|
105 | if (ctx->active_count != 0) |
---|
106 | { |
---|
107 | #ifdef CONFIG_SSL_FULL_MODE |
---|
108 | printf("bi_terminate: there were %d un-freed bigints\n", |
---|
109 | ctx->active_count); |
---|
110 | #endif |
---|
111 | abort(); |
---|
112 | } |
---|
113 | |
---|
114 | for (p = ctx->free_list; p != NULL; p = pn) |
---|
115 | { |
---|
116 | pn = p->next; |
---|
117 | free(p->comps); |
---|
118 | free(p); |
---|
119 | } |
---|
120 | |
---|
121 | free(ctx); |
---|
122 | } |
---|
123 | |
---|
124 | /** |
---|
125 | * @brief Increment the number of references to this object. |
---|
126 | * It does not do a full copy. |
---|
127 | * @param bi [in] The bigint to copy. |
---|
128 | * @return A reference to the same bigint. |
---|
129 | */ |
---|
130 | bigint *bi_copy(bigint *bi) |
---|
131 | { |
---|
132 | check(bi); |
---|
133 | if (bi->refs != PERMANENT) |
---|
134 | bi->refs++; |
---|
135 | return bi; |
---|
136 | } |
---|
137 | |
---|
138 | /** |
---|
139 | * @brief Simply make a bigint object "unfreeable" if bi_free() is called on it. |
---|
140 | * |
---|
141 | * For this object to be freed, bi_depermanent() must be called. |
---|
142 | * @param bi [in] The bigint to be made permanent. |
---|
143 | */ |
---|
144 | void bi_permanent(bigint *bi) |
---|
145 | { |
---|
146 | check(bi); |
---|
147 | if (bi->refs != 1) |
---|
148 | { |
---|
149 | #ifdef CONFIG_SSL_FULL_MODE |
---|
150 | printf("bi_permanent: refs was not 1\n"); |
---|
151 | #endif |
---|
152 | abort(); |
---|
153 | } |
---|
154 | |
---|
155 | bi->refs = PERMANENT; |
---|
156 | } |
---|
157 | |
---|
158 | /** |
---|
159 | * @brief Take a permanent object and make it eligible for freedom. |
---|
160 | * @param bi [in] The bigint to be made back to temporary. |
---|
161 | */ |
---|
162 | void bi_depermanent(bigint *bi) |
---|
163 | { |
---|
164 | check(bi); |
---|
165 | if (bi->refs != PERMANENT) |
---|
166 | { |
---|
167 | #ifdef CONFIG_SSL_FULL_MODE |
---|
168 | printf("bi_depermanent: bigint was not permanent\n"); |
---|
169 | #endif |
---|
170 | abort(); |
---|
171 | } |
---|
172 | |
---|
173 | bi->refs = 1; |
---|
174 | } |
---|
175 | |
---|
176 | /** |
---|
177 | * @brief Free a bigint object so it can be used again. |
---|
178 | * |
---|
179 | * The memory itself it not actually freed, just tagged as being available |
---|
180 | * @param ctx [in] The bigint session context. |
---|
181 | * @param bi [in] The bigint to be freed. |
---|
182 | */ |
---|
183 | void bi_free(BI_CTX *ctx, bigint *bi) |
---|
184 | { |
---|
185 | check(bi); |
---|
186 | if (bi->refs == PERMANENT) |
---|
187 | { |
---|
188 | return; |
---|
189 | } |
---|
190 | |
---|
191 | if (--bi->refs > 0) |
---|
192 | { |
---|
193 | return; |
---|
194 | } |
---|
195 | |
---|
196 | bi->next = ctx->free_list; |
---|
197 | ctx->free_list = bi; |
---|
198 | ctx->free_count++; |
---|
199 | |
---|
200 | if (--ctx->active_count < 0) |
---|
201 | { |
---|
202 | #ifdef CONFIG_SSL_FULL_MODE |
---|
203 | printf("bi_free: active_count went negative " |
---|
204 | "- double-freed bigint?\n"); |
---|
205 | #endif |
---|
206 | abort(); |
---|
207 | } |
---|
208 | } |
---|
209 | |
---|
210 | /** |
---|
211 | * @brief Convert an (unsigned) integer into a bigint. |
---|
212 | * @param ctx [in] The bigint session context. |
---|
213 | * @param i [in] The (unsigned) integer to be converted. |
---|
214 | * |
---|
215 | */ |
---|
216 | bigint *int_to_bi(BI_CTX *ctx, comp i) |
---|
217 | { |
---|
218 | bigint *biR = alloc(ctx, 1); |
---|
219 | biR->comps[0] = i; |
---|
220 | return biR; |
---|
221 | } |
---|
222 | |
---|
223 | /** |
---|
224 | * @brief Do a full copy of the bigint object. |
---|
225 | * @param ctx [in] The bigint session context. |
---|
226 | * @param bi [in] The bigint object to be copied. |
---|
227 | */ |
---|
228 | bigint *bi_clone(BI_CTX *ctx, const bigint *bi) |
---|
229 | { |
---|
230 | bigint *biR = alloc(ctx, bi->size); |
---|
231 | check(bi); |
---|
232 | memcpy(biR->comps, bi->comps, bi->size*COMP_BYTE_SIZE); |
---|
233 | return biR; |
---|
234 | } |
---|
235 | |
---|
236 | /** |
---|
237 | * @brief Perform an addition operation between two bigints. |
---|
238 | * @param ctx [in] The bigint session context. |
---|
239 | * @param bia [in] A bigint. |
---|
240 | * @param bib [in] Another bigint. |
---|
241 | * @return The result of the addition. |
---|
242 | */ |
---|
243 | bigint *bi_add(BI_CTX *ctx, bigint *bia, bigint *bib) |
---|
244 | { |
---|
245 | int n; |
---|
246 | comp carry = 0; |
---|
247 | comp *pa, *pb; |
---|
248 | |
---|
249 | check(bia); |
---|
250 | check(bib); |
---|
251 | |
---|
252 | n = max(bia->size, bib->size); |
---|
253 | more_comps(bia, n+1); |
---|
254 | more_comps(bib, n); |
---|
255 | pa = bia->comps; |
---|
256 | pb = bib->comps; |
---|
257 | |
---|
258 | do |
---|
259 | { |
---|
260 | comp sl, rl, cy1; |
---|
261 | sl = *pa + *pb++; |
---|
262 | rl = sl + carry; |
---|
263 | cy1 = sl < *pa; |
---|
264 | carry = cy1 | (rl < sl); |
---|
265 | *pa++ = rl; |
---|
266 | } while (--n != 0); |
---|
267 | |
---|
268 | *pa = carry; /* do overflow */ |
---|
269 | bi_free(ctx, bib); |
---|
270 | return trim(bia); |
---|
271 | } |
---|
272 | |
---|
273 | /** |
---|
274 | * @brief Perform a subtraction operation between two bigints. |
---|
275 | * @param ctx [in] The bigint session context. |
---|
276 | * @param bia [in] A bigint. |
---|
277 | * @param bib [in] Another bigint. |
---|
278 | * @param is_negative [out] If defined, indicates that the result was negative. |
---|
279 | * is_negative may be null. |
---|
280 | * @return The result of the subtraction. The result is always positive. |
---|
281 | */ |
---|
282 | bigint *bi_subtract(BI_CTX *ctx, |
---|
283 | bigint *bia, bigint *bib, int *is_negative) |
---|
284 | { |
---|
285 | int n = bia->size; |
---|
286 | comp *pa, *pb, carry = 0; |
---|
287 | |
---|
288 | check(bia); |
---|
289 | check(bib); |
---|
290 | |
---|
291 | more_comps(bib, n); |
---|
292 | pa = bia->comps; |
---|
293 | pb = bib->comps; |
---|
294 | |
---|
295 | do |
---|
296 | { |
---|
297 | comp sl, rl, cy1; |
---|
298 | sl = *pa - *pb++; |
---|
299 | rl = sl - carry; |
---|
300 | cy1 = sl > *pa; |
---|
301 | carry = cy1 | (rl > sl); |
---|
302 | *pa++ = rl; |
---|
303 | } while (--n != 0); |
---|
304 | |
---|
305 | if (is_negative) /* indicate a negative result */ |
---|
306 | { |
---|
307 | *is_negative = carry; |
---|
308 | } |
---|
309 | |
---|
310 | bi_free(ctx, trim(bib)); /* put bib back to the way it was */ |
---|
311 | return trim(bia); |
---|
312 | } |
---|
313 | |
---|
314 | /** |
---|
315 | * Perform a multiply between a bigint an an (unsigned) integer |
---|
316 | */ |
---|
317 | static bigint *bi_int_multiply(BI_CTX *ctx, bigint *bia, comp b) |
---|
318 | { |
---|
319 | int j = 0, n = bia->size; |
---|
320 | bigint *biR = alloc(ctx, n + 1); |
---|
321 | comp carry = 0; |
---|
322 | comp *r = biR->comps; |
---|
323 | comp *a = bia->comps; |
---|
324 | |
---|
325 | check(bia); |
---|
326 | |
---|
327 | /* clear things to start with */ |
---|
328 | memset(r, 0, ((n+1)*COMP_BYTE_SIZE)); |
---|
329 | |
---|
330 | do |
---|
331 | { |
---|
332 | long_comp tmp = *r + (long_comp)a[j]*b + carry; |
---|
333 | *r++ = (comp)tmp; /* downsize */ |
---|
334 | carry = (comp)(tmp >> COMP_BIT_SIZE); |
---|
335 | } while (++j < n); |
---|
336 | |
---|
337 | *r = carry; |
---|
338 | bi_free(ctx, bia); |
---|
339 | return trim(biR); |
---|
340 | } |
---|
341 | |
---|
342 | /** |
---|
343 | * @brief Does both division and modulo calculations. |
---|
344 | * |
---|
345 | * Used extensively when doing classical reduction. |
---|
346 | * @param ctx [in] The bigint session context. |
---|
347 | * @param u [in] A bigint which is the numerator. |
---|
348 | * @param v [in] Either the denominator or the modulus depending on the mode. |
---|
349 | * @param is_mod [n] Determines if this is a normal division (0) or a reduction |
---|
350 | * (1). |
---|
351 | * @return The result of the division/reduction. |
---|
352 | */ |
---|
353 | bigint *bi_divide(BI_CTX *ctx, bigint *u, bigint *v, int is_mod) |
---|
354 | { |
---|
355 | int n = v->size, m = u->size-n; |
---|
356 | int j = 0, orig_u_size = u->size; |
---|
357 | uint8_t mod_offset = ctx->mod_offset; |
---|
358 | comp d; |
---|
359 | bigint *quotient, *tmp_u; |
---|
360 | comp q_dash; |
---|
361 | |
---|
362 | check(u); |
---|
363 | check(v); |
---|
364 | |
---|
365 | /* if doing reduction and we are < mod, then return mod */ |
---|
366 | if (is_mod && bi_compare(v, u) > 0) |
---|
367 | { |
---|
368 | bi_free(ctx, v); |
---|
369 | return u; |
---|
370 | } |
---|
371 | |
---|
372 | quotient = alloc(ctx, m+1); |
---|
373 | tmp_u = alloc(ctx, n+1); |
---|
374 | v = trim(v); /* make sure we have no leading 0's */ |
---|
375 | d = (comp)((long_comp)COMP_RADIX/(V1+1)); |
---|
376 | |
---|
377 | /* clear things to start with */ |
---|
378 | memset(quotient->comps, 0, ((quotient->size)*COMP_BYTE_SIZE)); |
---|
379 | |
---|
380 | /* normalise */ |
---|
381 | if (d > 1) |
---|
382 | { |
---|
383 | u = bi_int_multiply(ctx, u, d); |
---|
384 | |
---|
385 | if (is_mod) |
---|
386 | { |
---|
387 | v = ctx->bi_normalised_mod[mod_offset]; |
---|
388 | } |
---|
389 | else |
---|
390 | { |
---|
391 | v = bi_int_multiply(ctx, v, d); |
---|
392 | } |
---|
393 | } |
---|
394 | |
---|
395 | if (orig_u_size == u->size) /* new digit position u0 */ |
---|
396 | { |
---|
397 | more_comps(u, orig_u_size + 1); |
---|
398 | } |
---|
399 | |
---|
400 | do |
---|
401 | { |
---|
402 | /* get a temporary short version of u */ |
---|
403 | memcpy(tmp_u->comps, &u->comps[u->size-n-1-j], (n+1)*COMP_BYTE_SIZE); |
---|
404 | |
---|
405 | /* calculate q' */ |
---|
406 | if (U(0) == V1) |
---|
407 | { |
---|
408 | q_dash = COMP_RADIX-1; |
---|
409 | } |
---|
410 | else |
---|
411 | { |
---|
412 | q_dash = (comp)(((long_comp)U(0)*COMP_RADIX + U(1))/V1); |
---|
413 | } |
---|
414 | |
---|
415 | if (v->size > 1 && V2) |
---|
416 | { |
---|
417 | /* we are implementing the following: |
---|
418 | if (V2*q_dash > (((U(0)*COMP_RADIX + U(1) - |
---|
419 | q_dash*V1)*COMP_RADIX) + U(2))) ... */ |
---|
420 | comp inner = (comp)((long_comp)COMP_RADIX*U(0) + U(1) - |
---|
421 | (long_comp)q_dash*V1); |
---|
422 | if ((long_comp)V2*q_dash > (long_comp)inner*COMP_RADIX + U(2)) |
---|
423 | { |
---|
424 | q_dash--; |
---|
425 | } |
---|
426 | } |
---|
427 | |
---|
428 | /* multiply and subtract */ |
---|
429 | if (q_dash) |
---|
430 | { |
---|
431 | int is_negative; |
---|
432 | tmp_u = bi_subtract(ctx, tmp_u, |
---|
433 | bi_int_multiply(ctx, bi_copy(v), q_dash), &is_negative); |
---|
434 | more_comps(tmp_u, n+1); |
---|
435 | |
---|
436 | Q(j) = q_dash; |
---|
437 | |
---|
438 | /* add back */ |
---|
439 | if (is_negative) |
---|
440 | { |
---|
441 | Q(j)--; |
---|
442 | tmp_u = bi_add(ctx, tmp_u, bi_copy(v)); |
---|
443 | |
---|
444 | /* lop off the carry */ |
---|
445 | tmp_u->size--; |
---|
446 | v->size--; |
---|
447 | } |
---|
448 | } |
---|
449 | else |
---|
450 | { |
---|
451 | Q(j) = 0; |
---|
452 | } |
---|
453 | |
---|
454 | /* copy back to u */ |
---|
455 | memcpy(&u->comps[u->size-n-1-j], tmp_u->comps, (n+1)*COMP_BYTE_SIZE); |
---|
456 | } while (++j <= m); |
---|
457 | |
---|
458 | bi_free(ctx, tmp_u); |
---|
459 | bi_free(ctx, v); |
---|
460 | |
---|
461 | if (is_mod) /* get the remainder */ |
---|
462 | { |
---|
463 | bi_free(ctx, quotient); |
---|
464 | return bi_int_divide(ctx, trim(u), d); |
---|
465 | } |
---|
466 | else /* get the quotient */ |
---|
467 | { |
---|
468 | bi_free(ctx, u); |
---|
469 | return trim(quotient); |
---|
470 | } |
---|
471 | } |
---|
472 | |
---|
473 | /* |
---|
474 | * Perform an integer divide on a bigint. |
---|
475 | */ |
---|
476 | static bigint *bi_int_divide(BI_CTX *ctx __unused, bigint *biR, comp denom) |
---|
477 | { |
---|
478 | int i = biR->size - 1; |
---|
479 | long_comp r = 0; |
---|
480 | |
---|
481 | check(biR); |
---|
482 | |
---|
483 | do |
---|
484 | { |
---|
485 | r = (r<<COMP_BIT_SIZE) + biR->comps[i]; |
---|
486 | biR->comps[i] = (comp)(r / denom); |
---|
487 | r %= denom; |
---|
488 | } while (--i != 0); |
---|
489 | |
---|
490 | return trim(biR); |
---|
491 | } |
---|
492 | |
---|
493 | #ifdef CONFIG_BIGINT_MONTGOMERY |
---|
494 | /** |
---|
495 | * There is a need for the value of integer N' such that B^-1(B-1)-N^-1N'=1, |
---|
496 | * where B^-1(B-1) mod N=1. Actually, only the least significant part of |
---|
497 | * N' is needed, hence the definition N0'=N' mod b. We reproduce below the |
---|
498 | * simple algorithm from an article by Dusse and Kaliski to efficiently |
---|
499 | * find N0' from N0 and b */ |
---|
500 | static comp modular_inverse(bigint *bim) |
---|
501 | { |
---|
502 | int i; |
---|
503 | comp t = 1; |
---|
504 | comp two_2_i_minus_1 = 2; /* 2^(i-1) */ |
---|
505 | long_comp two_2_i = 4; /* 2^i */ |
---|
506 | comp N = bim->comps[0]; |
---|
507 | |
---|
508 | for (i = 2; i <= COMP_BIT_SIZE; i++) |
---|
509 | { |
---|
510 | if ((long_comp)N*t%two_2_i >= two_2_i_minus_1) |
---|
511 | { |
---|
512 | t += two_2_i_minus_1; |
---|
513 | } |
---|
514 | |
---|
515 | two_2_i_minus_1 <<= 1; |
---|
516 | two_2_i <<= 1; |
---|
517 | } |
---|
518 | |
---|
519 | return (comp)(COMP_RADIX-t); |
---|
520 | } |
---|
521 | #endif |
---|
522 | |
---|
523 | #if defined(CONFIG_BIGINT_KARATSUBA) || defined(CONFIG_BIGINT_BARRETT) || \ |
---|
524 | defined(CONFIG_BIGINT_MONTGOMERY) |
---|
525 | /** |
---|
526 | * Take each component and shift down (in terms of components) |
---|
527 | */ |
---|
528 | static bigint *comp_right_shift(bigint *biR, int num_shifts) |
---|
529 | { |
---|
530 | int i = biR->size-num_shifts; |
---|
531 | comp *x = biR->comps; |
---|
532 | comp *y = &biR->comps[num_shifts]; |
---|
533 | |
---|
534 | check(biR); |
---|
535 | |
---|
536 | if (i <= 0) /* have we completely right shifted? */ |
---|
537 | { |
---|
538 | biR->comps[0] = 0; /* return 0 */ |
---|
539 | biR->size = 1; |
---|
540 | return biR; |
---|
541 | } |
---|
542 | |
---|
543 | do |
---|
544 | { |
---|
545 | *x++ = *y++; |
---|
546 | } while (--i > 0); |
---|
547 | |
---|
548 | biR->size -= num_shifts; |
---|
549 | return biR; |
---|
550 | } |
---|
551 | |
---|
552 | /** |
---|
553 | * Take each component and shift it up (in terms of components) |
---|
554 | */ |
---|
555 | static bigint *comp_left_shift(bigint *biR, int num_shifts) |
---|
556 | { |
---|
557 | int i = biR->size-1; |
---|
558 | comp *x, *y; |
---|
559 | |
---|
560 | check(biR); |
---|
561 | |
---|
562 | if (num_shifts <= 0) |
---|
563 | { |
---|
564 | return biR; |
---|
565 | } |
---|
566 | |
---|
567 | more_comps(biR, biR->size + num_shifts); |
---|
568 | |
---|
569 | x = &biR->comps[i+num_shifts]; |
---|
570 | y = &biR->comps[i]; |
---|
571 | |
---|
572 | do |
---|
573 | { |
---|
574 | *x-- = *y--; |
---|
575 | } while (i--); |
---|
576 | |
---|
577 | memset(biR->comps, 0, num_shifts*COMP_BYTE_SIZE); /* zero LS comps */ |
---|
578 | return biR; |
---|
579 | } |
---|
580 | #endif |
---|
581 | |
---|
582 | /** |
---|
583 | * @brief Allow a binary sequence to be imported as a bigint. |
---|
584 | * @param ctx [in] The bigint session context. |
---|
585 | * @param data [in] The data to be converted. |
---|
586 | * @param size [in] The number of bytes of data. |
---|
587 | * @return A bigint representing this data. |
---|
588 | */ |
---|
589 | bigint *bi_import(BI_CTX *ctx, const uint8_t *data, int size) |
---|
590 | { |
---|
591 | bigint *biR = alloc(ctx, (size+COMP_BYTE_SIZE-1)/COMP_BYTE_SIZE); |
---|
592 | int i, j = 0, offset = 0; |
---|
593 | |
---|
594 | memset(biR->comps, 0, biR->size*COMP_BYTE_SIZE); |
---|
595 | |
---|
596 | for (i = size-1; i >= 0; i--) |
---|
597 | { |
---|
598 | biR->comps[offset] += data[i] << (j*8); |
---|
599 | |
---|
600 | if (++j == COMP_BYTE_SIZE) |
---|
601 | { |
---|
602 | j = 0; |
---|
603 | offset ++; |
---|
604 | } |
---|
605 | } |
---|
606 | |
---|
607 | return trim(biR); |
---|
608 | } |
---|
609 | |
---|
610 | #ifdef CONFIG_SSL_FULL_MODE |
---|
611 | /** |
---|
612 | * @brief The testharness uses this code to import text hex-streams and |
---|
613 | * convert them into bigints. |
---|
614 | * @param ctx [in] The bigint session context. |
---|
615 | * @param data [in] A string consisting of hex characters. The characters must |
---|
616 | * be in upper case. |
---|
617 | * @return A bigint representing this data. |
---|
618 | */ |
---|
619 | bigint *bi_str_import(BI_CTX *ctx, const char *data) |
---|
620 | { |
---|
621 | int size = strlen(data); |
---|
622 | bigint *biR = alloc(ctx, (size+COMP_NUM_NIBBLES-1)/COMP_NUM_NIBBLES); |
---|
623 | int i, j = 0, offset = 0; |
---|
624 | memset(biR->comps, 0, biR->size*COMP_BYTE_SIZE); |
---|
625 | |
---|
626 | for (i = size-1; i >= 0; i--) |
---|
627 | { |
---|
628 | int num = (data[i] <= '9') ? (data[i] - '0') : (data[i] - 'A' + 10); |
---|
629 | biR->comps[offset] += num << (j*4); |
---|
630 | |
---|
631 | if (++j == COMP_NUM_NIBBLES) |
---|
632 | { |
---|
633 | j = 0; |
---|
634 | offset ++; |
---|
635 | } |
---|
636 | } |
---|
637 | |
---|
638 | return biR; |
---|
639 | } |
---|
640 | |
---|
641 | void bi_print(const char *label, bigint *x) |
---|
642 | { |
---|
643 | int i, j; |
---|
644 | |
---|
645 | if (x == NULL) |
---|
646 | { |
---|
647 | printf("%s: (null)\n", label); |
---|
648 | return; |
---|
649 | } |
---|
650 | |
---|
651 | printf("%s: (size %d)\n", label, x->size); |
---|
652 | for (i = x->size-1; i >= 0; i--) |
---|
653 | { |
---|
654 | for (j = COMP_NUM_NIBBLES-1; j >= 0; j--) |
---|
655 | { |
---|
656 | comp mask = 0x0f << (j*4); |
---|
657 | comp num = (x->comps[i] & mask) >> (j*4); |
---|
658 | putc((num <= 9) ? (num + '0') : (num + 'A' - 10), stdout); |
---|
659 | } |
---|
660 | } |
---|
661 | |
---|
662 | printf("\n"); |
---|
663 | } |
---|
664 | #endif |
---|
665 | |
---|
666 | /** |
---|
667 | * @brief Take a bigint and convert it into a byte sequence. |
---|
668 | * |
---|
669 | * This is useful after a decrypt operation. |
---|
670 | * @param ctx [in] The bigint session context. |
---|
671 | * @param x [in] The bigint to be converted. |
---|
672 | * @param data [out] The converted data as a byte stream. |
---|
673 | * @param size [in] The maximum size of the byte stream. Unused bytes will be |
---|
674 | * zeroed. |
---|
675 | */ |
---|
676 | void bi_export(BI_CTX *ctx, bigint *x, uint8_t *data, int size) |
---|
677 | { |
---|
678 | int i, j, k = size-1; |
---|
679 | |
---|
680 | check(x); |
---|
681 | memset(data, 0, size); /* ensure all leading 0's are cleared */ |
---|
682 | |
---|
683 | for (i = 0; i < x->size; i++) |
---|
684 | { |
---|
685 | for (j = 0; j < COMP_BYTE_SIZE; j++) |
---|
686 | { |
---|
687 | comp mask = 0xff << (j*8); |
---|
688 | int num = (x->comps[i] & mask) >> (j*8); |
---|
689 | data[k--] = num; |
---|
690 | |
---|
691 | if (k < 0) |
---|
692 | { |
---|
693 | break; |
---|
694 | } |
---|
695 | } |
---|
696 | } |
---|
697 | |
---|
698 | bi_free(ctx, x); |
---|
699 | } |
---|
700 | |
---|
701 | /** |
---|
702 | * @brief Pre-calculate some of the expensive steps in reduction. |
---|
703 | * |
---|
704 | * This function should only be called once (normally when a session starts). |
---|
705 | * When the session is over, bi_free_mod() should be called. bi_mod_power() |
---|
706 | * relies on this function being called. |
---|
707 | * @param ctx [in] The bigint session context. |
---|
708 | * @param bim [in] The bigint modulus that will be used. |
---|
709 | * @param mod_offset [in] There are three moduluii that can be stored - the |
---|
710 | * standard modulus, and its two primes p and q. This offset refers to which |
---|
711 | * modulus we are referring to. |
---|
712 | * @see bi_free_mod(), bi_mod_power(). |
---|
713 | */ |
---|
714 | void bi_set_mod(BI_CTX *ctx, bigint *bim, int mod_offset) |
---|
715 | { |
---|
716 | int k = bim->size; |
---|
717 | comp d = (comp)((long_comp)COMP_RADIX/(bim->comps[k-1]+1)); |
---|
718 | #ifdef CONFIG_BIGINT_MONTGOMERY |
---|
719 | bigint *R, *R2; |
---|
720 | #endif |
---|
721 | |
---|
722 | ctx->bi_mod[mod_offset] = bim; |
---|
723 | bi_permanent(ctx->bi_mod[mod_offset]); |
---|
724 | ctx->bi_normalised_mod[mod_offset] = bi_int_multiply(ctx, bim, d); |
---|
725 | bi_permanent(ctx->bi_normalised_mod[mod_offset]); |
---|
726 | |
---|
727 | #if defined(CONFIG_BIGINT_MONTGOMERY) |
---|
728 | /* set montgomery variables */ |
---|
729 | R = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k-1); /* R */ |
---|
730 | R2 = comp_left_shift(bi_clone(ctx, ctx->bi_radix), k*2-1); /* R^2 */ |
---|
731 | ctx->bi_RR_mod_m[mod_offset] = bi_mod(ctx, R2); /* R^2 mod m */ |
---|
732 | ctx->bi_R_mod_m[mod_offset] = bi_mod(ctx, R); /* R mod m */ |
---|
733 | |
---|
734 | bi_permanent(ctx->bi_RR_mod_m[mod_offset]); |
---|
735 | bi_permanent(ctx->bi_R_mod_m[mod_offset]); |
---|
736 | |
---|
737 | ctx->N0_dash[mod_offset] = modular_inverse(ctx->bi_mod[mod_offset]); |
---|
738 | |
---|
739 | #elif defined (CONFIG_BIGINT_BARRETT) |
---|
740 | ctx->bi_mu[mod_offset] = |
---|
741 | bi_divide(ctx, comp_left_shift( |
---|
742 | bi_clone(ctx, ctx->bi_radix), k*2-1), ctx->bi_mod[mod_offset], 0); |
---|
743 | bi_permanent(ctx->bi_mu[mod_offset]); |
---|
744 | #endif |
---|
745 | } |
---|
746 | |
---|
747 | /** |
---|
748 | * @brief Used when cleaning various bigints at the end of a session. |
---|
749 | * @param ctx [in] The bigint session context. |
---|
750 | * @param mod_offset [in] The offset to use. |
---|
751 | * @see bi_set_mod(). |
---|
752 | */ |
---|
753 | void bi_free_mod(BI_CTX *ctx, int mod_offset) |
---|
754 | { |
---|
755 | bi_depermanent(ctx->bi_mod[mod_offset]); |
---|
756 | bi_free(ctx, ctx->bi_mod[mod_offset]); |
---|
757 | #if defined (CONFIG_BIGINT_MONTGOMERY) |
---|
758 | bi_depermanent(ctx->bi_RR_mod_m[mod_offset]); |
---|
759 | bi_depermanent(ctx->bi_R_mod_m[mod_offset]); |
---|
760 | bi_free(ctx, ctx->bi_RR_mod_m[mod_offset]); |
---|
761 | bi_free(ctx, ctx->bi_R_mod_m[mod_offset]); |
---|
762 | #elif defined(CONFIG_BIGINT_BARRETT) |
---|
763 | bi_depermanent(ctx->bi_mu[mod_offset]); |
---|
764 | bi_free(ctx, ctx->bi_mu[mod_offset]); |
---|
765 | #endif |
---|
766 | bi_depermanent(ctx->bi_normalised_mod[mod_offset]); |
---|
767 | bi_free(ctx, ctx->bi_normalised_mod[mod_offset]); |
---|
768 | } |
---|
769 | |
---|
770 | /** |
---|
771 | * Perform a standard multiplication between two bigints. |
---|
772 | */ |
---|
773 | static bigint *regular_multiply(BI_CTX *ctx, bigint *bia, bigint *bib) |
---|
774 | { |
---|
775 | int i, j, i_plus_j; |
---|
776 | int n = bia->size; |
---|
777 | int t = bib->size; |
---|
778 | bigint *biR = alloc(ctx, n + t); |
---|
779 | comp *sr = biR->comps; |
---|
780 | comp *sa = bia->comps; |
---|
781 | comp *sb = bib->comps; |
---|
782 | |
---|
783 | check(bia); |
---|
784 | check(bib); |
---|
785 | |
---|
786 | /* clear things to start with */ |
---|
787 | memset(biR->comps, 0, ((n+t)*COMP_BYTE_SIZE)); |
---|
788 | i = 0; |
---|
789 | |
---|
790 | do |
---|
791 | { |
---|
792 | comp carry = 0; |
---|
793 | comp b = *sb++; |
---|
794 | i_plus_j = i; |
---|
795 | j = 0; |
---|
796 | |
---|
797 | do |
---|
798 | { |
---|
799 | long_comp tmp = sr[i_plus_j] + (long_comp)sa[j]*b + carry; |
---|
800 | sr[i_plus_j++] = (comp)tmp; /* downsize */ |
---|
801 | carry = (comp)(tmp >> COMP_BIT_SIZE); |
---|
802 | } while (++j < n); |
---|
803 | |
---|
804 | sr[i_plus_j] = carry; |
---|
805 | } while (++i < t); |
---|
806 | |
---|
807 | bi_free(ctx, bia); |
---|
808 | bi_free(ctx, bib); |
---|
809 | return trim(biR); |
---|
810 | } |
---|
811 | |
---|
812 | #ifdef CONFIG_BIGINT_KARATSUBA |
---|
813 | /* |
---|
814 | * Karatsuba improves on regular multiplication due to only 3 multiplications |
---|
815 | * being done instead of 4. The additional additions/subtractions are O(N) |
---|
816 | * rather than O(N^2) and so for big numbers it saves on a few operations |
---|
817 | */ |
---|
818 | static bigint *karatsuba(BI_CTX *ctx, bigint *bia, bigint *bib, int is_square) |
---|
819 | { |
---|
820 | bigint *x0, *x1; |
---|
821 | bigint *p0, *p1, *p2; |
---|
822 | int m; |
---|
823 | |
---|
824 | if (is_square) |
---|
825 | { |
---|
826 | m = (bia->size + 1)/2; |
---|
827 | } |
---|
828 | else |
---|
829 | { |
---|
830 | m = (max(bia->size, bib->size) + 1)/2; |
---|
831 | } |
---|
832 | |
---|
833 | x0 = bi_clone(ctx, bia); |
---|
834 | x0->size = m; |
---|
835 | x1 = bi_clone(ctx, bia); |
---|
836 | comp_right_shift(x1, m); |
---|
837 | bi_free(ctx, bia); |
---|
838 | |
---|
839 | /* work out the 3 partial products */ |
---|
840 | if (is_square) |
---|
841 | { |
---|
842 | p0 = bi_square(ctx, bi_copy(x0)); |
---|
843 | p2 = bi_square(ctx, bi_copy(x1)); |
---|
844 | p1 = bi_square(ctx, bi_add(ctx, x0, x1)); |
---|
845 | } |
---|
846 | else /* normal multiply */ |
---|
847 | { |
---|
848 | bigint *y0, *y1; |
---|
849 | y0 = bi_clone(ctx, bib); |
---|
850 | y0->size = m; |
---|
851 | y1 = bi_clone(ctx, bib); |
---|
852 | comp_right_shift(y1, m); |
---|
853 | bi_free(ctx, bib); |
---|
854 | |
---|
855 | p0 = bi_multiply(ctx, bi_copy(x0), bi_copy(y0)); |
---|
856 | p2 = bi_multiply(ctx, bi_copy(x1), bi_copy(y1)); |
---|
857 | p1 = bi_multiply(ctx, bi_add(ctx, x0, x1), bi_add(ctx, y0, y1)); |
---|
858 | } |
---|
859 | |
---|
860 | p1 = bi_subtract(ctx, |
---|
861 | bi_subtract(ctx, p1, bi_copy(p2), NULL), bi_copy(p0), NULL); |
---|
862 | |
---|
863 | comp_left_shift(p1, m); |
---|
864 | comp_left_shift(p2, 2*m); |
---|
865 | return bi_add(ctx, p1, bi_add(ctx, p0, p2)); |
---|
866 | } |
---|
867 | #endif |
---|
868 | |
---|
869 | /** |
---|
870 | * @brief Perform a multiplication operation between two bigints. |
---|
871 | * @param ctx [in] The bigint session context. |
---|
872 | * @param bia [in] A bigint. |
---|
873 | * @param bib [in] Another bigint. |
---|
874 | * @return The result of the multiplication. |
---|
875 | */ |
---|
876 | bigint *bi_multiply(BI_CTX *ctx, bigint *bia, bigint *bib) |
---|
877 | { |
---|
878 | check(bia); |
---|
879 | check(bib); |
---|
880 | |
---|
881 | #ifdef CONFIG_BIGINT_KARATSUBA |
---|
882 | if (min(bia->size, bib->size) < MUL_KARATSUBA_THRESH) |
---|
883 | { |
---|
884 | return regular_multiply(ctx, bia, bib); |
---|
885 | } |
---|
886 | |
---|
887 | return karatsuba(ctx, bia, bib, 0); |
---|
888 | #else |
---|
889 | return regular_multiply(ctx, bia, bib); |
---|
890 | #endif |
---|
891 | } |
---|
892 | |
---|
893 | #ifdef CONFIG_BIGINT_SQUARE |
---|
894 | /* |
---|
895 | * Perform the actual square operion. It takes into account overflow. |
---|
896 | */ |
---|
897 | static bigint *regular_square(BI_CTX *ctx, bigint *bi) |
---|
898 | { |
---|
899 | int t = bi->size; |
---|
900 | int i = 0, j; |
---|
901 | bigint *biR = alloc(ctx, t*2); |
---|
902 | comp *w = biR->comps; |
---|
903 | comp *x = bi->comps; |
---|
904 | comp carry; |
---|
905 | |
---|
906 | memset(w, 0, biR->size*COMP_BYTE_SIZE); |
---|
907 | |
---|
908 | do |
---|
909 | { |
---|
910 | long_comp tmp = w[2*i] + (long_comp)x[i]*x[i]; |
---|
911 | comp u = 0; |
---|
912 | w[2*i] = (comp)tmp; |
---|
913 | carry = (comp)(tmp >> COMP_BIT_SIZE); |
---|
914 | |
---|
915 | for (j = i+1; j < t; j++) |
---|
916 | { |
---|
917 | long_comp xx = (long_comp)x[i]*x[j]; |
---|
918 | long_comp blob = (long_comp)w[i+j]+carry; |
---|
919 | |
---|
920 | if (u) /* previous overflow */ |
---|
921 | { |
---|
922 | blob += COMP_RADIX; |
---|
923 | } |
---|
924 | |
---|
925 | u = 0; |
---|
926 | if (xx & COMP_BIG_MSB) /* check for overflow */ |
---|
927 | { |
---|
928 | u = 1; |
---|
929 | } |
---|
930 | |
---|
931 | tmp = 2*xx + blob; |
---|
932 | w[i+j] = (comp)tmp; |
---|
933 | carry = (comp)(tmp >> COMP_BIT_SIZE); |
---|
934 | } |
---|
935 | |
---|
936 | w[i+t] += carry; |
---|
937 | |
---|
938 | if (u) |
---|
939 | { |
---|
940 | w[i+t+1] = 1; /* add carry */ |
---|
941 | } |
---|
942 | } while (++i < t); |
---|
943 | |
---|
944 | bi_free(ctx, bi); |
---|
945 | return trim(biR); |
---|
946 | } |
---|
947 | |
---|
948 | /** |
---|
949 | * @brief Perform a square operation on a bigint. |
---|
950 | * @param ctx [in] The bigint session context. |
---|
951 | * @param bia [in] A bigint. |
---|
952 | * @return The result of the multiplication. |
---|
953 | */ |
---|
954 | bigint *bi_square(BI_CTX *ctx, bigint *bia) |
---|
955 | { |
---|
956 | check(bia); |
---|
957 | |
---|
958 | #ifdef CONFIG_BIGINT_KARATSUBA |
---|
959 | if (bia->size < SQU_KARATSUBA_THRESH) |
---|
960 | { |
---|
961 | return regular_square(ctx, bia); |
---|
962 | } |
---|
963 | |
---|
964 | return karatsuba(ctx, bia, NULL, 1); |
---|
965 | #else |
---|
966 | return regular_square(ctx, bia); |
---|
967 | #endif |
---|
968 | } |
---|
969 | #endif |
---|
970 | |
---|
971 | /** |
---|
972 | * @brief Compare two bigints. |
---|
973 | * @param bia [in] A bigint. |
---|
974 | * @param bib [in] Another bigint. |
---|
975 | * @return -1 if smaller, 1 if larger and 0 if equal. |
---|
976 | */ |
---|
977 | int bi_compare(bigint *bia, bigint *bib) |
---|
978 | { |
---|
979 | int r, i; |
---|
980 | |
---|
981 | check(bia); |
---|
982 | check(bib); |
---|
983 | |
---|
984 | if (bia->size > bib->size) |
---|
985 | r = 1; |
---|
986 | else if (bia->size < bib->size) |
---|
987 | r = -1; |
---|
988 | else |
---|
989 | { |
---|
990 | comp *a = bia->comps; |
---|
991 | comp *b = bib->comps; |
---|
992 | |
---|
993 | /* Same number of components. Compare starting from the high end |
---|
994 | * and working down. */ |
---|
995 | r = 0; |
---|
996 | i = bia->size - 1; |
---|
997 | |
---|
998 | do |
---|
999 | { |
---|
1000 | if (a[i] > b[i]) |
---|
1001 | { |
---|
1002 | r = 1; |
---|
1003 | break; |
---|
1004 | } |
---|
1005 | else if (a[i] < b[i]) |
---|
1006 | { |
---|
1007 | r = -1; |
---|
1008 | break; |
---|
1009 | } |
---|
1010 | } while (--i >= 0); |
---|
1011 | } |
---|
1012 | |
---|
1013 | return r; |
---|
1014 | } |
---|
1015 | |
---|
1016 | /* |
---|
1017 | * Allocate and zero more components. Does not consume bi. |
---|
1018 | */ |
---|
1019 | static void more_comps(bigint *bi, int n) |
---|
1020 | { |
---|
1021 | if (n > bi->max_comps) |
---|
1022 | { |
---|
1023 | bi->max_comps = max(bi->max_comps * 2, n); |
---|
1024 | bi->comps = (comp*)realloc(bi->comps, bi->max_comps * COMP_BYTE_SIZE); |
---|
1025 | } |
---|
1026 | |
---|
1027 | if (n > bi->size) |
---|
1028 | { |
---|
1029 | memset(&bi->comps[bi->size], 0, (n-bi->size)*COMP_BYTE_SIZE); |
---|
1030 | } |
---|
1031 | |
---|
1032 | bi->size = n; |
---|
1033 | } |
---|
1034 | |
---|
1035 | /* |
---|
1036 | * Make a new empty bigint. It may just use an old one if one is available. |
---|
1037 | * Otherwise get one off the heap. |
---|
1038 | */ |
---|
1039 | static bigint *alloc(BI_CTX *ctx, int size) |
---|
1040 | { |
---|
1041 | bigint *biR; |
---|
1042 | |
---|
1043 | /* Can we recycle an old bigint? */ |
---|
1044 | if (ctx->free_list != NULL) |
---|
1045 | { |
---|
1046 | biR = ctx->free_list; |
---|
1047 | ctx->free_list = biR->next; |
---|
1048 | ctx->free_count--; |
---|
1049 | |
---|
1050 | if (biR->refs != 0) |
---|
1051 | { |
---|
1052 | #ifdef CONFIG_SSL_FULL_MODE |
---|
1053 | printf("alloc: refs was not 0\n"); |
---|
1054 | #endif |
---|
1055 | abort(); /* create a stack trace from a core dump */ |
---|
1056 | } |
---|
1057 | |
---|
1058 | more_comps(biR, size); |
---|
1059 | } |
---|
1060 | else |
---|
1061 | { |
---|
1062 | /* No free bigints available - create a new one. */ |
---|
1063 | biR = (bigint *)malloc(sizeof(bigint)); |
---|
1064 | biR->comps = (comp*)malloc(size * COMP_BYTE_SIZE); |
---|
1065 | biR->max_comps = size; /* give some space to spare */ |
---|
1066 | } |
---|
1067 | |
---|
1068 | biR->size = size; |
---|
1069 | biR->refs = 1; |
---|
1070 | biR->next = NULL; |
---|
1071 | ctx->active_count++; |
---|
1072 | return biR; |
---|
1073 | } |
---|
1074 | |
---|
1075 | /* |
---|
1076 | * Work out the highest '1' bit in an exponent. Used when doing sliding-window |
---|
1077 | * exponentiation. |
---|
1078 | */ |
---|
1079 | static int find_max_exp_index(bigint *biexp) |
---|
1080 | { |
---|
1081 | int i = COMP_BIT_SIZE-1; |
---|
1082 | comp shift = COMP_RADIX/2; |
---|
1083 | comp test = biexp->comps[biexp->size-1]; /* assume no leading zeroes */ |
---|
1084 | |
---|
1085 | check(biexp); |
---|
1086 | |
---|
1087 | do |
---|
1088 | { |
---|
1089 | if (test & shift) |
---|
1090 | { |
---|
1091 | return i+(biexp->size-1)*COMP_BIT_SIZE; |
---|
1092 | } |
---|
1093 | |
---|
1094 | shift >>= 1; |
---|
1095 | } while (--i != 0); |
---|
1096 | |
---|
1097 | return -1; /* error - must have been a leading 0 */ |
---|
1098 | } |
---|
1099 | |
---|
1100 | /* |
---|
1101 | * Is a particular bit is an exponent 1 or 0? Used when doing sliding-window |
---|
1102 | * exponentiation. |
---|
1103 | */ |
---|
1104 | static int exp_bit_is_one(bigint *biexp, int offset) |
---|
1105 | { |
---|
1106 | comp test = biexp->comps[offset / COMP_BIT_SIZE]; |
---|
1107 | int num_shifts = offset % COMP_BIT_SIZE; |
---|
1108 | comp shift = 1; |
---|
1109 | int i; |
---|
1110 | |
---|
1111 | check(biexp); |
---|
1112 | |
---|
1113 | for (i = 0; i < num_shifts; i++) |
---|
1114 | { |
---|
1115 | shift <<= 1; |
---|
1116 | } |
---|
1117 | |
---|
1118 | return test & shift; |
---|
1119 | } |
---|
1120 | |
---|
1121 | #ifdef CONFIG_BIGINT_CHECK_ON |
---|
1122 | /* |
---|
1123 | * Perform a sanity check on bi. |
---|
1124 | */ |
---|
1125 | static void check(const bigint *bi) |
---|
1126 | { |
---|
1127 | if (bi->refs <= 0) |
---|
1128 | { |
---|
1129 | printf("check: zero or negative refs in bigint\n"); |
---|
1130 | abort(); |
---|
1131 | } |
---|
1132 | |
---|
1133 | if (bi->next != NULL) |
---|
1134 | { |
---|
1135 | printf("check: attempt to use a bigint from " |
---|
1136 | "the free list\n"); |
---|
1137 | abort(); |
---|
1138 | } |
---|
1139 | } |
---|
1140 | #endif |
---|
1141 | |
---|
1142 | /* |
---|
1143 | * Delete any leading 0's (and allow for 0). |
---|
1144 | */ |
---|
1145 | static bigint *trim(bigint *bi) |
---|
1146 | { |
---|
1147 | check(bi); |
---|
1148 | |
---|
1149 | while (bi->comps[bi->size-1] == 0 && bi->size > 1) |
---|
1150 | { |
---|
1151 | bi->size--; |
---|
1152 | } |
---|
1153 | |
---|
1154 | return bi; |
---|
1155 | } |
---|
1156 | |
---|
1157 | #if defined(CONFIG_BIGINT_MONTGOMERY) |
---|
1158 | /** |
---|
1159 | * @brief Perform a single montgomery reduction. |
---|
1160 | * @param ctx [in] The bigint session context. |
---|
1161 | * @param bixy [in] A bigint. |
---|
1162 | * @return The result of the montgomery reduction. |
---|
1163 | */ |
---|
1164 | bigint *bi_mont(BI_CTX *ctx, bigint *bixy) |
---|
1165 | { |
---|
1166 | int i = 0, n; |
---|
1167 | uint8_t mod_offset = ctx->mod_offset; |
---|
1168 | bigint *bim = ctx->bi_mod[mod_offset]; |
---|
1169 | comp mod_inv = ctx->N0_dash[mod_offset]; |
---|
1170 | |
---|
1171 | check(bixy); |
---|
1172 | |
---|
1173 | if (ctx->use_classical) /* just use classical instead */ |
---|
1174 | { |
---|
1175 | return bi_mod(ctx, bixy); |
---|
1176 | } |
---|
1177 | |
---|
1178 | n = bim->size; |
---|
1179 | |
---|
1180 | do |
---|
1181 | { |
---|
1182 | bixy = bi_add(ctx, bixy, comp_left_shift( |
---|
1183 | bi_int_multiply(ctx, bim, bixy->comps[i]*mod_inv), i)); |
---|
1184 | } while (++i < n); |
---|
1185 | |
---|
1186 | comp_right_shift(bixy, n); |
---|
1187 | |
---|
1188 | if (bi_compare(bixy, bim) >= 0) |
---|
1189 | { |
---|
1190 | bixy = bi_subtract(ctx, bixy, bim, NULL); |
---|
1191 | } |
---|
1192 | |
---|
1193 | return bixy; |
---|
1194 | } |
---|
1195 | |
---|
1196 | #elif defined(CONFIG_BIGINT_BARRETT) |
---|
1197 | /* |
---|
1198 | * Stomp on the most significant components to give the illusion of a "mod base |
---|
1199 | * radix" operation |
---|
1200 | */ |
---|
1201 | static bigint *comp_mod(bigint *bi, int mod) |
---|
1202 | { |
---|
1203 | check(bi); |
---|
1204 | |
---|
1205 | if (bi->size > mod) |
---|
1206 | { |
---|
1207 | bi->size = mod; |
---|
1208 | } |
---|
1209 | |
---|
1210 | return bi; |
---|
1211 | } |
---|
1212 | |
---|
1213 | /* |
---|
1214 | * Barrett reduction has no need for some parts of the product, so ignore bits |
---|
1215 | * of the multiply. This routine gives Barrett its big performance |
---|
1216 | * improvements over Classical/Montgomery reduction methods. |
---|
1217 | */ |
---|
1218 | static bigint *partial_multiply(BI_CTX *ctx, bigint *bia, bigint *bib, |
---|
1219 | int inner_partial, int outer_partial) |
---|
1220 | { |
---|
1221 | int i = 0, j, n = bia->size, t = bib->size; |
---|
1222 | bigint *biR; |
---|
1223 | comp carry; |
---|
1224 | comp *sr, *sa, *sb; |
---|
1225 | |
---|
1226 | check(bia); |
---|
1227 | check(bib); |
---|
1228 | |
---|
1229 | biR = alloc(ctx, n + t); |
---|
1230 | sa = bia->comps; |
---|
1231 | sb = bib->comps; |
---|
1232 | sr = biR->comps; |
---|
1233 | |
---|
1234 | if (inner_partial) |
---|
1235 | { |
---|
1236 | memset(sr, 0, inner_partial*COMP_BYTE_SIZE); |
---|
1237 | } |
---|
1238 | else /* outer partial */ |
---|
1239 | { |
---|
1240 | if (n < outer_partial || t < outer_partial) /* should we bother? */ |
---|
1241 | { |
---|
1242 | bi_free(ctx, bia); |
---|
1243 | bi_free(ctx, bib); |
---|
1244 | biR->comps[0] = 0; /* return 0 */ |
---|
1245 | biR->size = 1; |
---|
1246 | return biR; |
---|
1247 | } |
---|
1248 | |
---|
1249 | memset(&sr[outer_partial], 0, (n+t-outer_partial)*COMP_BYTE_SIZE); |
---|
1250 | } |
---|
1251 | |
---|
1252 | do |
---|
1253 | { |
---|
1254 | comp *a = sa; |
---|
1255 | comp b = *sb++; |
---|
1256 | long_comp tmp; |
---|
1257 | int i_plus_j = i; |
---|
1258 | carry = 0; |
---|
1259 | j = n; |
---|
1260 | |
---|
1261 | if (outer_partial && i_plus_j < outer_partial) |
---|
1262 | { |
---|
1263 | i_plus_j = outer_partial; |
---|
1264 | a = &sa[outer_partial-i]; |
---|
1265 | j = n-(outer_partial-i); |
---|
1266 | } |
---|
1267 | |
---|
1268 | do |
---|
1269 | { |
---|
1270 | if (inner_partial && i_plus_j >= inner_partial) |
---|
1271 | { |
---|
1272 | break; |
---|
1273 | } |
---|
1274 | |
---|
1275 | tmp = sr[i_plus_j] + ((long_comp)*a++)*b + carry; |
---|
1276 | sr[i_plus_j++] = (comp)tmp; /* downsize */ |
---|
1277 | carry = (comp)(tmp >> COMP_BIT_SIZE); |
---|
1278 | } while (--j != 0); |
---|
1279 | |
---|
1280 | sr[i_plus_j] = carry; |
---|
1281 | } while (++i < t); |
---|
1282 | |
---|
1283 | bi_free(ctx, bia); |
---|
1284 | bi_free(ctx, bib); |
---|
1285 | return trim(biR); |
---|
1286 | } |
---|
1287 | |
---|
1288 | /** |
---|
1289 | * @brief Perform a single Barrett reduction. |
---|
1290 | * @param ctx [in] The bigint session context. |
---|
1291 | * @param bi [in] A bigint. |
---|
1292 | * @return The result of the Barrett reduction. |
---|
1293 | */ |
---|
1294 | bigint *bi_barrett(BI_CTX *ctx, bigint *bi) |
---|
1295 | { |
---|
1296 | bigint *q1, *q2, *q3, *r1, *r2, *r; |
---|
1297 | uint8_t mod_offset = ctx->mod_offset; |
---|
1298 | bigint *bim = ctx->bi_mod[mod_offset]; |
---|
1299 | int k = bim->size; |
---|
1300 | |
---|
1301 | check(bi); |
---|
1302 | check(bim); |
---|
1303 | |
---|
1304 | /* use Classical method instead - Barrett cannot help here */ |
---|
1305 | if (bi->size > k*2) |
---|
1306 | { |
---|
1307 | return bi_mod(ctx, bi); |
---|
1308 | } |
---|
1309 | |
---|
1310 | q1 = comp_right_shift(bi_clone(ctx, bi), k-1); |
---|
1311 | |
---|
1312 | /* do outer partial multiply */ |
---|
1313 | q2 = partial_multiply(ctx, q1, ctx->bi_mu[mod_offset], 0, k-1); |
---|
1314 | q3 = comp_right_shift(q2, k+1); |
---|
1315 | r1 = comp_mod(bi, k+1); |
---|
1316 | |
---|
1317 | /* do inner partial multiply */ |
---|
1318 | r2 = comp_mod(partial_multiply(ctx, q3, bim, k+1, 0), k+1); |
---|
1319 | r = bi_subtract(ctx, r1, r2, NULL); |
---|
1320 | |
---|
1321 | /* if (r >= m) r = r - m; */ |
---|
1322 | if (bi_compare(r, bim) >= 0) |
---|
1323 | { |
---|
1324 | r = bi_subtract(ctx, r, bim, NULL); |
---|
1325 | } |
---|
1326 | |
---|
1327 | return r; |
---|
1328 | } |
---|
1329 | #endif /* CONFIG_BIGINT_BARRETT */ |
---|
1330 | |
---|
1331 | #ifdef CONFIG_BIGINT_SLIDING_WINDOW |
---|
1332 | /* |
---|
1333 | * Work out g1, g3, g5, g7... etc for the sliding-window algorithm |
---|
1334 | */ |
---|
1335 | static void precompute_slide_window(BI_CTX *ctx, int window, bigint *g1) |
---|
1336 | { |
---|
1337 | int k = 1, i; |
---|
1338 | bigint *g2; |
---|
1339 | |
---|
1340 | for (i = 0; i < window-1; i++) /* compute 2^(window-1) */ |
---|
1341 | { |
---|
1342 | k <<= 1; |
---|
1343 | } |
---|
1344 | |
---|
1345 | ctx->g = (bigint **)malloc(k*sizeof(bigint *)); |
---|
1346 | ctx->g[0] = bi_clone(ctx, g1); |
---|
1347 | bi_permanent(ctx->g[0]); |
---|
1348 | g2 = bi_residue(ctx, bi_square(ctx, ctx->g[0])); /* g^2 */ |
---|
1349 | |
---|
1350 | for (i = 1; i < k; i++) |
---|
1351 | { |
---|
1352 | ctx->g[i] = bi_residue(ctx, bi_multiply(ctx, ctx->g[i-1], bi_copy(g2))); |
---|
1353 | bi_permanent(ctx->g[i]); |
---|
1354 | } |
---|
1355 | |
---|
1356 | bi_free(ctx, g2); |
---|
1357 | ctx->window = k; |
---|
1358 | } |
---|
1359 | #endif |
---|
1360 | |
---|
1361 | /** |
---|
1362 | * @brief Perform a modular exponentiation. |
---|
1363 | * |
---|
1364 | * This function requires bi_set_mod() to have been called previously. This is |
---|
1365 | * one of the optimisations used for performance. |
---|
1366 | * @param ctx [in] The bigint session context. |
---|
1367 | * @param bi [in] The bigint on which to perform the mod power operation. |
---|
1368 | * @param biexp [in] The bigint exponent. |
---|
1369 | * @see bi_set_mod(). |
---|
1370 | */ |
---|
1371 | bigint *bi_mod_power(BI_CTX *ctx, bigint *bi, bigint *biexp) |
---|
1372 | { |
---|
1373 | int i = find_max_exp_index(biexp), j, window_size = 1; |
---|
1374 | bigint *biR = int_to_bi(ctx, 1); |
---|
1375 | |
---|
1376 | #if defined(CONFIG_BIGINT_MONTGOMERY) |
---|
1377 | uint8_t mod_offset = ctx->mod_offset; |
---|
1378 | if (!ctx->use_classical) |
---|
1379 | { |
---|
1380 | /* preconvert */ |
---|
1381 | bi = bi_mont(ctx, |
---|
1382 | bi_multiply(ctx, bi, ctx->bi_RR_mod_m[mod_offset])); /* x' */ |
---|
1383 | bi_free(ctx, biR); |
---|
1384 | biR = ctx->bi_R_mod_m[mod_offset]; /* A */ |
---|
1385 | } |
---|
1386 | #endif |
---|
1387 | |
---|
1388 | check(bi); |
---|
1389 | check(biexp); |
---|
1390 | |
---|
1391 | #ifdef CONFIG_BIGINT_SLIDING_WINDOW |
---|
1392 | for (j = i; j > 32; j /= 5) /* work out an optimum size */ |
---|
1393 | window_size++; |
---|
1394 | |
---|
1395 | /* work out the slide constants */ |
---|
1396 | precompute_slide_window(ctx, window_size, bi); |
---|
1397 | #else /* just one constant */ |
---|
1398 | ctx->g = (bigint **)malloc(sizeof(bigint *)); |
---|
1399 | ctx->g[0] = bi_clone(ctx, bi); |
---|
1400 | ctx->window = 1; |
---|
1401 | bi_permanent(ctx->g[0]); |
---|
1402 | #endif |
---|
1403 | |
---|
1404 | /* if sliding-window is off, then only one bit will be done at a time and |
---|
1405 | * will reduce to standard left-to-right exponentiation */ |
---|
1406 | do |
---|
1407 | { |
---|
1408 | if (exp_bit_is_one(biexp, i)) |
---|
1409 | { |
---|
1410 | int l = i-window_size+1; |
---|
1411 | int part_exp = 0; |
---|
1412 | |
---|
1413 | if (l < 0) /* LSB of exponent will always be 1 */ |
---|
1414 | l = 0; |
---|
1415 | else |
---|
1416 | { |
---|
1417 | while (exp_bit_is_one(biexp, l) == 0) |
---|
1418 | l++; /* go back up */ |
---|
1419 | } |
---|
1420 | |
---|
1421 | /* build up the section of the exponent */ |
---|
1422 | for (j = i; j >= l; j--) |
---|
1423 | { |
---|
1424 | biR = bi_residue(ctx, bi_square(ctx, biR)); |
---|
1425 | if (exp_bit_is_one(biexp, j)) |
---|
1426 | part_exp++; |
---|
1427 | |
---|
1428 | if (j != l) |
---|
1429 | part_exp <<= 1; |
---|
1430 | } |
---|
1431 | |
---|
1432 | part_exp = (part_exp-1)/2; /* adjust for array */ |
---|
1433 | biR = bi_residue(ctx, bi_multiply(ctx, biR, ctx->g[part_exp])); |
---|
1434 | i = l-1; |
---|
1435 | } |
---|
1436 | else /* square it */ |
---|
1437 | { |
---|
1438 | biR = bi_residue(ctx, bi_square(ctx, biR)); |
---|
1439 | i--; |
---|
1440 | } |
---|
1441 | } while (i >= 0); |
---|
1442 | |
---|
1443 | /* cleanup */ |
---|
1444 | for (i = 0; i < ctx->window; i++) |
---|
1445 | { |
---|
1446 | bi_depermanent(ctx->g[i]); |
---|
1447 | bi_free(ctx, ctx->g[i]); |
---|
1448 | } |
---|
1449 | |
---|
1450 | free(ctx->g); |
---|
1451 | bi_free(ctx, bi); |
---|
1452 | bi_free(ctx, biexp); |
---|
1453 | #if defined CONFIG_BIGINT_MONTGOMERY |
---|
1454 | return ctx->use_classical ? biR : bi_mont(ctx, biR); /* convert back */ |
---|
1455 | #else /* CONFIG_BIGINT_CLASSICAL or CONFIG_BIGINT_BARRETT */ |
---|
1456 | return biR; |
---|
1457 | #endif |
---|
1458 | } |
---|
1459 | |
---|
1460 | #ifdef CONFIG_SSL_CERT_VERIFICATION |
---|
1461 | /** |
---|
1462 | * @brief Perform a modular exponentiation using a temporary modulus. |
---|
1463 | * |
---|
1464 | * We need this function to check the signatures of certificates. The modulus |
---|
1465 | * of this function is temporary as it's just used for authentication. |
---|
1466 | * @param ctx [in] The bigint session context. |
---|
1467 | * @param bi [in] The bigint to perform the exp/mod. |
---|
1468 | * @param bim [in] The temporary modulus. |
---|
1469 | * @param biexp [in] The bigint exponent. |
---|
1470 | * @see bi_set_mod(). |
---|
1471 | */ |
---|
1472 | bigint *bi_mod_power2(BI_CTX *ctx, bigint *bi, bigint *bim, bigint *biexp) |
---|
1473 | { |
---|
1474 | bigint *biR, *tmp_biR; |
---|
1475 | |
---|
1476 | /* Set up a temporary bigint context and transfer what we need between |
---|
1477 | * them. We need to do this since we want to keep the original modulus |
---|
1478 | * which is already in this context. This operation is only called when |
---|
1479 | * doing peer verification, and so is not expensive :-) */ |
---|
1480 | BI_CTX *tmp_ctx = bi_initialize(); |
---|
1481 | bi_set_mod(tmp_ctx, bi_clone(tmp_ctx, bim), BIGINT_M_OFFSET); |
---|
1482 | tmp_biR = bi_mod_power(tmp_ctx, |
---|
1483 | bi_clone(tmp_ctx, bi), |
---|
1484 | bi_clone(tmp_ctx, biexp)); |
---|
1485 | biR = bi_clone(ctx, tmp_biR); |
---|
1486 | bi_free(tmp_ctx, tmp_biR); |
---|
1487 | bi_free_mod(tmp_ctx, BIGINT_M_OFFSET); |
---|
1488 | bi_terminate(tmp_ctx); |
---|
1489 | |
---|
1490 | bi_free(ctx, bi); |
---|
1491 | bi_free(ctx, bim); |
---|
1492 | bi_free(ctx, biexp); |
---|
1493 | return biR; |
---|
1494 | } |
---|
1495 | #endif |
---|
1496 | /** @} */ |
---|