source: bootcd/isolinux/syslinux-6.03/gpxe/src/drivers/net/ath5k/ath5k_eeprom.c

Last change on this file was e16e8f2, checked in by Edwin Eefting <edwin@datux.nl>, 3 years ago

bootstuff

  • Property mode set to 100644
File size: 46.7 KB
Line 
1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5 *
6 * Lightly modified for gPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>.
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 *
20 */
21
22FILE_LICENCE ( MIT );
23
24/*************************************\
25* EEPROM access functions and helpers *
26\*************************************/
27
28#include <unistd.h>
29#include <stdlib.h>
30
31#include "ath5k.h"
32#include "reg.h"
33#include "base.h"
34
35/*
36 * Read from eeprom
37 */
38static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
39{
40        u32 status, timeout;
41
42        /*
43         * Initialize EEPROM access
44         */
45        if (ah->ah_version == AR5K_AR5210) {
46                AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
47                (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
48        } else {
49                ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
50                AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
51                                AR5K_EEPROM_CMD_READ);
52        }
53
54        for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
55                status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
56                if (status & AR5K_EEPROM_STAT_RDDONE) {
57                        if (status & AR5K_EEPROM_STAT_RDERR)
58                                return -EIO;
59                        *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
60                                        0xffff);
61                        return 0;
62                }
63                udelay(15);
64        }
65
66        return -ETIMEDOUT;
67}
68
69/*
70 * Translate binary channel representation in EEPROM to frequency
71 */
72static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
73                                 unsigned int mode)
74{
75        u16 val;
76
77        if (bin == AR5K_EEPROM_CHANNEL_DIS)
78                return bin;
79
80        if (mode == AR5K_EEPROM_MODE_11A) {
81                if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
82                        val = (5 * bin) + 4800;
83                else
84                        val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
85                                (bin * 10) + 5100;
86        } else {
87                if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
88                        val = bin + 2300;
89                else
90                        val = bin + 2400;
91        }
92
93        return val;
94}
95
96/*
97 * Initialize eeprom & capabilities structs
98 */
99static int
100ath5k_eeprom_init_header(struct ath5k_hw *ah)
101{
102        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
103        int ret;
104        u16 val;
105
106        /*
107         * Read values from EEPROM and store them in the capability structure
108         */
109        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
110        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
111        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
112        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
113        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
114
115        /* Return if we have an old EEPROM */
116        if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
117                return 0;
118
119        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
120            ee_ant_gain);
121
122        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
123                AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
124                AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
125
126                /* XXX: Don't know which versions include these two */
127                AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
128
129                if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
130                        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
131
132                if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
133                        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
134                        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
135                        AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
136                }
137        }
138
139        if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
140                AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
141                ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
142                ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
143
144                AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
145                ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
146                ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
147        }
148
149        AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
150
151        if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
152                ee->ee_is_hb63 = 1;
153        else
154                ee->ee_is_hb63 = 0;
155
156        AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
157        ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
158        ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? 1 : 0;
159
160        return 0;
161}
162
163
164/*
165 * Read antenna infos from eeprom
166 */
167static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
168                unsigned int mode)
169{
170        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
171        u32 o = *offset;
172        u16 val;
173        int ret, i = 0;
174
175        AR5K_EEPROM_READ(o++, val);
176        ee->ee_switch_settling[mode]    = (val >> 8) & 0x7f;
177        ee->ee_atn_tx_rx[mode]          = (val >> 2) & 0x3f;
178        ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
179
180        AR5K_EEPROM_READ(o++, val);
181        ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
182        ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
183        ee->ee_ant_control[mode][i++]   = val & 0x3f;
184
185        AR5K_EEPROM_READ(o++, val);
186        ee->ee_ant_control[mode][i++]   = (val >> 10) & 0x3f;
187        ee->ee_ant_control[mode][i++]   = (val >> 4) & 0x3f;
188        ee->ee_ant_control[mode][i]     = (val << 2) & 0x3f;
189
190        AR5K_EEPROM_READ(o++, val);
191        ee->ee_ant_control[mode][i++]   |= (val >> 14) & 0x3;
192        ee->ee_ant_control[mode][i++]   = (val >> 8) & 0x3f;
193        ee->ee_ant_control[mode][i++]   = (val >> 2) & 0x3f;
194        ee->ee_ant_control[mode][i]     = (val << 4) & 0x3f;
195
196        AR5K_EEPROM_READ(o++, val);
197        ee->ee_ant_control[mode][i++]   |= (val >> 12) & 0xf;
198        ee->ee_ant_control[mode][i++]   = (val >> 6) & 0x3f;
199        ee->ee_ant_control[mode][i++]   = val & 0x3f;
200
201        /* Get antenna modes */
202        ah->ah_antenna[mode][0] =
203            (ee->ee_ant_control[mode][0] << 4);
204        ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
205             ee->ee_ant_control[mode][1]        |
206            (ee->ee_ant_control[mode][2] << 6)  |
207            (ee->ee_ant_control[mode][3] << 12) |
208            (ee->ee_ant_control[mode][4] << 18) |
209            (ee->ee_ant_control[mode][5] << 24);
210        ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
211             ee->ee_ant_control[mode][6]        |
212            (ee->ee_ant_control[mode][7] << 6)  |
213            (ee->ee_ant_control[mode][8] << 12) |
214            (ee->ee_ant_control[mode][9] << 18) |
215            (ee->ee_ant_control[mode][10] << 24);
216
217        /* return new offset */
218        *offset = o;
219
220        return 0;
221}
222
223/*
224 * Read supported modes and some mode-specific calibration data
225 * from eeprom
226 */
227static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
228                unsigned int mode)
229{
230        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
231        u32 o = *offset;
232        u16 val;
233        int ret;
234
235        ee->ee_n_piers[mode] = 0;
236        AR5K_EEPROM_READ(o++, val);
237        ee->ee_adc_desired_size[mode]   = (s8)((val >> 8) & 0xff);
238        switch(mode) {
239        case AR5K_EEPROM_MODE_11A:
240                ee->ee_ob[mode][3]      = (val >> 5) & 0x7;
241                ee->ee_db[mode][3]      = (val >> 2) & 0x7;
242                ee->ee_ob[mode][2]      = (val << 1) & 0x7;
243
244                AR5K_EEPROM_READ(o++, val);
245                ee->ee_ob[mode][2]      |= (val >> 15) & 0x1;
246                ee->ee_db[mode][2]      = (val >> 12) & 0x7;
247                ee->ee_ob[mode][1]      = (val >> 9) & 0x7;
248                ee->ee_db[mode][1]      = (val >> 6) & 0x7;
249                ee->ee_ob[mode][0]      = (val >> 3) & 0x7;
250                ee->ee_db[mode][0]      = val & 0x7;
251                break;
252        case AR5K_EEPROM_MODE_11G:
253        case AR5K_EEPROM_MODE_11B:
254                ee->ee_ob[mode][1]      = (val >> 4) & 0x7;
255                ee->ee_db[mode][1]      = val & 0x7;
256                break;
257        }
258
259        AR5K_EEPROM_READ(o++, val);
260        ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
261        ee->ee_thr_62[mode]             = val & 0xff;
262
263        if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
264                ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
265
266        AR5K_EEPROM_READ(o++, val);
267        ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
268        ee->ee_tx_frm2xpa_enable[mode]  = val & 0xff;
269
270        AR5K_EEPROM_READ(o++, val);
271        ee->ee_pga_desired_size[mode]   = (val >> 8) & 0xff;
272
273        if ((val & 0xff) & 0x80)
274                ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
275        else
276                ee->ee_noise_floor_thr[mode] = val & 0xff;
277
278        if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
279                ee->ee_noise_floor_thr[mode] =
280                    mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
281
282        AR5K_EEPROM_READ(o++, val);
283        ee->ee_xlna_gain[mode]          = (val >> 5) & 0xff;
284        ee->ee_x_gain[mode]             = (val >> 1) & 0xf;
285        ee->ee_xpd[mode]                = val & 0x1;
286
287        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
288                ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
289
290        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
291                AR5K_EEPROM_READ(o++, val);
292                ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
293
294                if (mode == AR5K_EEPROM_MODE_11A)
295                        ee->ee_xr_power[mode] = val & 0x3f;
296                else {
297                        ee->ee_ob[mode][0] = val & 0x7;
298                        ee->ee_db[mode][0] = (val >> 3) & 0x7;
299                }
300        }
301
302        if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
303                ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
304                ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
305        } else {
306                ee->ee_i_gain[mode] = (val >> 13) & 0x7;
307
308                AR5K_EEPROM_READ(o++, val);
309                ee->ee_i_gain[mode] |= (val << 3) & 0x38;
310
311                if (mode == AR5K_EEPROM_MODE_11G) {
312                        ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
313                        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
314                                ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
315                }
316        }
317
318        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
319                        mode == AR5K_EEPROM_MODE_11A) {
320                ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
321                ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
322        }
323
324        if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
325                goto done;
326
327        /* Note: >= v5 have bg freq piers on another location
328         * so these freq piers are ignored for >= v5 (should be 0xff
329         * anyway) */
330        switch(mode) {
331        case AR5K_EEPROM_MODE_11A:
332                if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
333                        break;
334
335                AR5K_EEPROM_READ(o++, val);
336                ee->ee_margin_tx_rx[mode] = val & 0x3f;
337                break;
338        case AR5K_EEPROM_MODE_11B:
339                AR5K_EEPROM_READ(o++, val);
340
341                ee->ee_pwr_cal_b[0].freq =
342                        ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
343                if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
344                        ee->ee_n_piers[mode]++;
345
346                ee->ee_pwr_cal_b[1].freq =
347                        ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
348                if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
349                        ee->ee_n_piers[mode]++;
350
351                AR5K_EEPROM_READ(o++, val);
352                ee->ee_pwr_cal_b[2].freq =
353                        ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
354                if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
355                        ee->ee_n_piers[mode]++;
356
357                if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
358                        ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
359                break;
360        case AR5K_EEPROM_MODE_11G:
361                AR5K_EEPROM_READ(o++, val);
362
363                ee->ee_pwr_cal_g[0].freq =
364                        ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
365                if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
366                        ee->ee_n_piers[mode]++;
367
368                ee->ee_pwr_cal_g[1].freq =
369                        ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
370                if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
371                        ee->ee_n_piers[mode]++;
372
373                AR5K_EEPROM_READ(o++, val);
374                ee->ee_turbo_max_power[mode] = val & 0x7f;
375                ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
376
377                AR5K_EEPROM_READ(o++, val);
378                ee->ee_pwr_cal_g[2].freq =
379                        ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
380                if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
381                        ee->ee_n_piers[mode]++;
382
383                if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
384                        ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
385
386                AR5K_EEPROM_READ(o++, val);
387                ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
388                ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
389
390                if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
391                        AR5K_EEPROM_READ(o++, val);
392                        ee->ee_cck_ofdm_gain_delta = val & 0xff;
393                }
394                break;
395        }
396
397done:
398        /* return new offset */
399        *offset = o;
400
401        return 0;
402}
403
404/*
405 * Read turbo mode information on newer EEPROM versions
406 */
407static int
408ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
409                              u32 *offset, unsigned int mode)
410{
411        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
412        u32 o = *offset;
413        u16 val;
414        int ret;
415
416        if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
417                return 0;
418
419        switch (mode){
420        case AR5K_EEPROM_MODE_11A:
421                ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
422
423                ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
424                AR5K_EEPROM_READ(o++, val);
425                ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
426                ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
427
428                ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
429                AR5K_EEPROM_READ(o++, val);
430                ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
431                ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
432
433                if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
434                        ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
435                break;
436        case AR5K_EEPROM_MODE_11G:
437                ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
438
439                ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
440                AR5K_EEPROM_READ(o++, val);
441                ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
442                ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
443
444                ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
445                AR5K_EEPROM_READ(o++, val);
446                ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
447                ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
448                break;
449        }
450
451        /* return new offset */
452        *offset = o;
453
454        return 0;
455}
456
457/* Read mode-specific data (except power calibration data) */
458static int
459ath5k_eeprom_init_modes(struct ath5k_hw *ah)
460{
461        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
462        u32 mode_offset[3];
463        unsigned int mode;
464        u32 offset;
465        int ret;
466
467        /*
468         * Get values for all modes
469         */
470        mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
471        mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
472        mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
473
474        ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
475                AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
476
477        for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
478                offset = mode_offset[mode];
479
480                ret = ath5k_eeprom_read_ants(ah, &offset, mode);
481                if (ret)
482                        return ret;
483
484                ret = ath5k_eeprom_read_modes(ah, &offset, mode);
485                if (ret)
486                        return ret;
487
488                ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
489                if (ret)
490                        return ret;
491        }
492
493        /* override for older eeprom versions for better performance */
494        if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
495                ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
496                ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
497                ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
498        }
499
500        return 0;
501}
502
503/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
504 * frequency mask) */
505static inline int
506ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
507                        struct ath5k_chan_pcal_info *pc, unsigned int mode)
508{
509        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
510        int o = *offset;
511        int i = 0;
512        u8 freq1, freq2;
513        int ret;
514        u16 val;
515
516        ee->ee_n_piers[mode] = 0;
517        while(i < max) {
518                AR5K_EEPROM_READ(o++, val);
519
520                freq1 = val & 0xff;
521                if (!freq1)
522                        break;
523
524                pc[i++].freq = ath5k_eeprom_bin2freq(ee,
525                                freq1, mode);
526                ee->ee_n_piers[mode]++;
527
528                freq2 = (val >> 8) & 0xff;
529                if (!freq2)
530                        break;
531
532                pc[i++].freq = ath5k_eeprom_bin2freq(ee,
533                                freq2, mode);
534                ee->ee_n_piers[mode]++;
535        }
536
537        /* return new offset */
538        *offset = o;
539
540        return 0;
541}
542
543/* Read frequency piers for 802.11a */
544static int
545ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
546{
547        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
548        struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
549        int i, ret;
550        u16 val;
551        u8 mask;
552
553        if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
554                ath5k_eeprom_read_freq_list(ah, &offset,
555                        AR5K_EEPROM_N_5GHZ_CHAN, pcal,
556                        AR5K_EEPROM_MODE_11A);
557        } else {
558                mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
559
560                AR5K_EEPROM_READ(offset++, val);
561                pcal[0].freq  = (val >> 9) & mask;
562                pcal[1].freq  = (val >> 2) & mask;
563                pcal[2].freq  = (val << 5) & mask;
564
565                AR5K_EEPROM_READ(offset++, val);
566                pcal[2].freq |= (val >> 11) & 0x1f;
567                pcal[3].freq  = (val >> 4) & mask;
568                pcal[4].freq  = (val << 3) & mask;
569
570                AR5K_EEPROM_READ(offset++, val);
571                pcal[4].freq |= (val >> 13) & 0x7;
572                pcal[5].freq  = (val >> 6) & mask;
573                pcal[6].freq  = (val << 1) & mask;
574
575                AR5K_EEPROM_READ(offset++, val);
576                pcal[6].freq |= (val >> 15) & 0x1;
577                pcal[7].freq  = (val >> 8) & mask;
578                pcal[8].freq  = (val >> 1) & mask;
579                pcal[9].freq  = (val << 6) & mask;
580
581                AR5K_EEPROM_READ(offset++, val);
582                pcal[9].freq |= (val >> 10) & 0x3f;
583
584                /* Fixed number of piers */
585                ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
586
587                for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
588                        pcal[i].freq = ath5k_eeprom_bin2freq(ee,
589                                pcal[i].freq, AR5K_EEPROM_MODE_11A);
590                }
591        }
592
593        return 0;
594}
595
596/* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
597static inline int
598ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
599{
600        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
601        struct ath5k_chan_pcal_info *pcal;
602
603        switch(mode) {
604        case AR5K_EEPROM_MODE_11B:
605                pcal = ee->ee_pwr_cal_b;
606                break;
607        case AR5K_EEPROM_MODE_11G:
608                pcal = ee->ee_pwr_cal_g;
609                break;
610        default:
611                return -EINVAL;
612        }
613
614        ath5k_eeprom_read_freq_list(ah, &offset,
615                AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
616                mode);
617
618        return 0;
619}
620
621/*
622 * Read power calibration for RF5111 chips
623 *
624 * For RF5111 we have an XPD -eXternal Power Detector- curve
625 * for each calibrated channel. Each curve has 0,5dB Power steps
626 * on x axis and PCDAC steps (offsets) on y axis and looks like an
627 * exponential function. To recreate the curve we read 11 points
628 * here and interpolate later.
629 */
630
631/* Used to match PCDAC steps with power values on RF5111 chips
632 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
633 * steps that match with the power values we read from eeprom. On
634 * older eeprom versions (< 3.2) these steps are equaly spaced at
635 * 10% of the pcdac curve -until the curve reaches it's maximum-
636 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
637 * these 11 steps are spaced in a different way. This function returns
638 * the pcdac steps based on eeprom version and curve min/max so that we
639 * can have pcdac/pwr points.
640 */
641static inline void
642ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
643{
644        static const u16 intercepts3[] =
645                { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
646        static const u16 intercepts3_2[] =
647                { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
648        const u16 *ip;
649        unsigned i;
650
651        if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
652                ip = intercepts3_2;
653        else
654                ip = intercepts3;
655
656        for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
657                vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
658}
659
660/* Convert RF5111 specific data to generic raw data
661 * used by interpolation code */
662static int
663ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
664                                struct ath5k_chan_pcal_info *chinfo)
665{
666        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
667        struct ath5k_chan_pcal_info_rf5111 *pcinfo;
668        struct ath5k_pdgain_info *pd;
669        u8 pier, point, idx;
670        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
671
672        /* Fill raw data for each calibration pier */
673        for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
674
675                pcinfo = &chinfo[pier].rf5111_info;
676
677                /* Allocate pd_curves for this cal pier */
678                chinfo[pier].pd_curves =
679                        calloc(AR5K_EEPROM_N_PD_CURVES,
680                               sizeof(struct ath5k_pdgain_info));
681
682                if (!chinfo[pier].pd_curves)
683                        return -ENOMEM;
684
685                /* Only one curve for RF5111
686                 * find out which one and place
687                 * in in pd_curves.
688                 * Note: ee_x_gain is reversed here */
689                for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
690
691                        if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
692                                pdgain_idx[0] = idx;
693                                break;
694                        }
695                }
696
697                ee->ee_pd_gains[mode] = 1;
698
699                pd = &chinfo[pier].pd_curves[idx];
700
701                pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
702
703                /* Allocate pd points for this curve */
704                pd->pd_step = calloc(AR5K_EEPROM_N_PWR_POINTS_5111, sizeof(u8));
705                if (!pd->pd_step)
706                        return -ENOMEM;
707
708                pd->pd_pwr = calloc(AR5K_EEPROM_N_PWR_POINTS_5111, sizeof(s16));
709                if (!pd->pd_pwr)
710                        return -ENOMEM;
711
712                /* Fill raw dataset
713                 * (convert power to 0.25dB units
714                 * for RF5112 combatibility) */
715                for (point = 0; point < pd->pd_points; point++) {
716
717                        /* Absolute values */
718                        pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
719
720                        /* Already sorted */
721                        pd->pd_step[point] = pcinfo->pcdac[point];
722                }
723
724                /* Set min/max pwr */
725                chinfo[pier].min_pwr = pd->pd_pwr[0];
726                chinfo[pier].max_pwr = pd->pd_pwr[10];
727
728        }
729
730        return 0;
731}
732
733/* Parse EEPROM data */
734static int
735ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
736{
737        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
738        struct ath5k_chan_pcal_info *pcal;
739        int offset, ret;
740        int i;
741        u16 val;
742
743        offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
744        switch(mode) {
745        case AR5K_EEPROM_MODE_11A:
746                if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
747                        return 0;
748
749                ret = ath5k_eeprom_init_11a_pcal_freq(ah,
750                        offset + AR5K_EEPROM_GROUP1_OFFSET);
751                if (ret < 0)
752                        return ret;
753
754                offset += AR5K_EEPROM_GROUP2_OFFSET;
755                pcal = ee->ee_pwr_cal_a;
756                break;
757        case AR5K_EEPROM_MODE_11B:
758                if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
759                    !AR5K_EEPROM_HDR_11G(ee->ee_header))
760                        return 0;
761
762                pcal = ee->ee_pwr_cal_b;
763                offset += AR5K_EEPROM_GROUP3_OFFSET;
764
765                /* fixed piers */
766                pcal[0].freq = 2412;
767                pcal[1].freq = 2447;
768                pcal[2].freq = 2484;
769                ee->ee_n_piers[mode] = 3;
770                break;
771        case AR5K_EEPROM_MODE_11G:
772                if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
773                        return 0;
774
775                pcal = ee->ee_pwr_cal_g;
776                offset += AR5K_EEPROM_GROUP4_OFFSET;
777
778                /* fixed piers */
779                pcal[0].freq = 2312;
780                pcal[1].freq = 2412;
781                pcal[2].freq = 2484;
782                ee->ee_n_piers[mode] = 3;
783                break;
784        default:
785                return -EINVAL;
786        }
787
788        for (i = 0; i < ee->ee_n_piers[mode]; i++) {
789                struct ath5k_chan_pcal_info_rf5111 *cdata =
790                        &pcal[i].rf5111_info;
791
792                AR5K_EEPROM_READ(offset++, val);
793                cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
794                cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
795                cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
796
797                AR5K_EEPROM_READ(offset++, val);
798                cdata->pwr[0] |= ((val >> 14) & 0x3);
799                cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
800                cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
801                cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
802
803                AR5K_EEPROM_READ(offset++, val);
804                cdata->pwr[3] |= ((val >> 12) & 0xf);
805                cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
806                cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
807
808                AR5K_EEPROM_READ(offset++, val);
809                cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
810                cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
811                cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
812
813                AR5K_EEPROM_READ(offset++, val);
814                cdata->pwr[8] |= ((val >> 14) & 0x3);
815                cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
816                cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
817
818                ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
819                        cdata->pcdac_max, cdata->pcdac);
820        }
821
822        return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
823}
824
825
826/*
827 * Read power calibration for RF5112 chips
828 *
829 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
830 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
831 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
832 * power steps on x axis and PCDAC steps on y axis and looks like a
833 * linear function. To recreate the curve and pass the power values
834 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
835 * and 3 points for xpd 3 (higher gain -> lower power) here and
836 * interpolate later.
837 *
838 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
839 */
840
841/* Convert RF5112 specific data to generic raw data
842 * used by interpolation code */
843static int
844ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
845                                struct ath5k_chan_pcal_info *chinfo)
846{
847        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
848        struct ath5k_chan_pcal_info_rf5112 *pcinfo;
849        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
850        unsigned int pier, pdg, point;
851
852        /* Fill raw data for each calibration pier */
853        for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
854
855                pcinfo = &chinfo[pier].rf5112_info;
856
857                /* Allocate pd_curves for this cal pier */
858                chinfo[pier].pd_curves =
859                                calloc(AR5K_EEPROM_N_PD_CURVES,
860                                       sizeof(struct ath5k_pdgain_info));
861
862                if (!chinfo[pier].pd_curves)
863                        return -ENOMEM;
864
865                /* Fill pd_curves */
866                for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
867
868                        u8 idx = pdgain_idx[pdg];
869                        struct ath5k_pdgain_info *pd =
870                                        &chinfo[pier].pd_curves[idx];
871
872                        /* Lowest gain curve (max power) */
873                        if (pdg == 0) {
874                                /* One more point for better accuracy */
875                                pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
876
877                                /* Allocate pd points for this curve */
878                                pd->pd_step = calloc(pd->pd_points, sizeof(u8));
879
880                                if (!pd->pd_step)
881                                        return -ENOMEM;
882
883                                pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
884
885                                if (!pd->pd_pwr)
886                                        return -ENOMEM;
887
888
889                                /* Fill raw dataset
890                                 * (all power levels are in 0.25dB units) */
891                                pd->pd_step[0] = pcinfo->pcdac_x0[0];
892                                pd->pd_pwr[0] = pcinfo->pwr_x0[0];
893
894                                for (point = 1; point < pd->pd_points;
895                                point++) {
896                                        /* Absolute values */
897                                        pd->pd_pwr[point] =
898                                                pcinfo->pwr_x0[point];
899
900                                        /* Deltas */
901                                        pd->pd_step[point] =
902                                                pd->pd_step[point - 1] +
903                                                pcinfo->pcdac_x0[point];
904                                }
905
906                                /* Set min power for this frequency */
907                                chinfo[pier].min_pwr = pd->pd_pwr[0];
908
909                        /* Highest gain curve (min power) */
910                        } else if (pdg == 1) {
911
912                                pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
913
914                                /* Allocate pd points for this curve */
915                                pd->pd_step = calloc(pd->pd_points, sizeof(u8));
916
917                                if (!pd->pd_step)
918                                        return -ENOMEM;
919
920                                pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
921
922                                if (!pd->pd_pwr)
923                                        return -ENOMEM;
924
925                                /* Fill raw dataset
926                                 * (all power levels are in 0.25dB units) */
927                                for (point = 0; point < pd->pd_points;
928                                point++) {
929                                        /* Absolute values */
930                                        pd->pd_pwr[point] =
931                                                pcinfo->pwr_x3[point];
932
933                                        /* Fixed points */
934                                        pd->pd_step[point] =
935                                                pcinfo->pcdac_x3[point];
936                                }
937
938                                /* Since we have a higher gain curve
939                                 * override min power */
940                                chinfo[pier].min_pwr = pd->pd_pwr[0];
941                        }
942                }
943        }
944
945        return 0;
946}
947
948/* Parse EEPROM data */
949static int
950ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
951{
952        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
953        struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
954        struct ath5k_chan_pcal_info *gen_chan_info;
955        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
956        u32 offset;
957        u8 i, c;
958        u16 val;
959        int ret;
960        u8 pd_gains = 0;
961
962        /* Count how many curves we have and
963         * identify them (which one of the 4
964         * available curves we have on each count).
965         * Curves are stored from lower (x0) to
966         * higher (x3) gain */
967        for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
968                /* ee_x_gain[mode] is x gain mask */
969                if ((ee->ee_x_gain[mode] >> i) & 0x1)
970                        pdgain_idx[pd_gains++] = i;
971        }
972        ee->ee_pd_gains[mode] = pd_gains;
973
974        if (pd_gains == 0 || pd_gains > 2)
975                return -EINVAL;
976
977        switch (mode) {
978        case AR5K_EEPROM_MODE_11A:
979                /*
980                 * Read 5GHz EEPROM channels
981                 */
982                offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
983                ath5k_eeprom_init_11a_pcal_freq(ah, offset);
984
985                offset += AR5K_EEPROM_GROUP2_OFFSET;
986                gen_chan_info = ee->ee_pwr_cal_a;
987                break;
988        case AR5K_EEPROM_MODE_11B:
989                offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
990                if (AR5K_EEPROM_HDR_11A(ee->ee_header))
991                        offset += AR5K_EEPROM_GROUP3_OFFSET;
992
993                /* NB: frequency piers parsed during mode init */
994                gen_chan_info = ee->ee_pwr_cal_b;
995                break;
996        case AR5K_EEPROM_MODE_11G:
997                offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
998                if (AR5K_EEPROM_HDR_11A(ee->ee_header))
999                        offset += AR5K_EEPROM_GROUP4_OFFSET;
1000                else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1001                        offset += AR5K_EEPROM_GROUP2_OFFSET;
1002
1003                /* NB: frequency piers parsed during mode init */
1004                gen_chan_info = ee->ee_pwr_cal_g;
1005                break;
1006        default:
1007                return -EINVAL;
1008        }
1009
1010        for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1011                chan_pcal_info = &gen_chan_info[i].rf5112_info;
1012
1013                /* Power values in quarter dB
1014                 * for the lower xpd gain curve
1015                 * (0 dBm -> higher output power) */
1016                for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1017                        AR5K_EEPROM_READ(offset++, val);
1018                        chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1019                        chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1020                }
1021
1022                /* PCDAC steps
1023                 * corresponding to the above power
1024                 * measurements */
1025                AR5K_EEPROM_READ(offset++, val);
1026                chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1027                chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1028                chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1029
1030                /* Power values in quarter dB
1031                 * for the higher xpd gain curve
1032                 * (18 dBm -> lower output power) */
1033                AR5K_EEPROM_READ(offset++, val);
1034                chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1035                chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1036
1037                AR5K_EEPROM_READ(offset++, val);
1038                chan_pcal_info->pwr_x3[2] = (val & 0xff);
1039
1040                /* PCDAC steps
1041                 * corresponding to the above power
1042                 * measurements (fixed) */
1043                chan_pcal_info->pcdac_x3[0] = 20;
1044                chan_pcal_info->pcdac_x3[1] = 35;
1045                chan_pcal_info->pcdac_x3[2] = 63;
1046
1047                if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1048                        chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1049
1050                        /* Last xpd0 power level is also channel maximum */
1051                        gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1052                } else {
1053                        chan_pcal_info->pcdac_x0[0] = 1;
1054                        gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1055                }
1056
1057        }
1058
1059        return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1060}
1061
1062
1063/*
1064 * Read power calibration for RF2413 chips
1065 *
1066 * For RF2413 we have a Power to PDDAC table (Power Detector)
1067 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1068 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1069 * axis and looks like an exponential function like the RF5111 curve.
1070 *
1071 * To recreate the curves we read here the points and interpolate
1072 * later. Note that in most cases only 2 (higher and lower) curves are
1073 * used (like RF5112) but vendors have the oportunity to include all
1074 * 4 curves on eeprom. The final curve (higher power) has an extra
1075 * point for better accuracy like RF5112.
1076 */
1077
1078/* For RF2413 power calibration data doesn't start on a fixed location and
1079 * if a mode is not supported, it's section is missing -not zeroed-.
1080 * So we need to calculate the starting offset for each section by using
1081 * these two functions */
1082
1083/* Return the size of each section based on the mode and the number of pd
1084 * gains available (maximum 4). */
1085static inline unsigned int
1086ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1087{
1088        static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1089        unsigned int sz;
1090
1091        sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1092        sz *= ee->ee_n_piers[mode];
1093
1094        return sz;
1095}
1096
1097/* Return the starting offset for a section based on the modes supported
1098 * and each section's size. */
1099static unsigned int
1100ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1101{
1102        u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1103
1104        switch(mode) {
1105        case AR5K_EEPROM_MODE_11G:
1106                if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1107                        offset += ath5k_pdgains_size_2413(ee,
1108                                        AR5K_EEPROM_MODE_11B) +
1109                                        AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1110                /* fall through */
1111        case AR5K_EEPROM_MODE_11B:
1112                if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1113                        offset += ath5k_pdgains_size_2413(ee,
1114                                        AR5K_EEPROM_MODE_11A) +
1115                                        AR5K_EEPROM_N_5GHZ_CHAN / 2;
1116                /* fall through */
1117        case AR5K_EEPROM_MODE_11A:
1118                break;
1119        default:
1120                break;
1121        }
1122
1123        return offset;
1124}
1125
1126/* Convert RF2413 specific data to generic raw data
1127 * used by interpolation code */
1128static int
1129ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1130                                struct ath5k_chan_pcal_info *chinfo)
1131{
1132        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1133        struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1134        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1135        unsigned int pier, point;
1136        int pdg;
1137
1138        /* Fill raw data for each calibration pier */
1139        for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1140
1141                pcinfo = &chinfo[pier].rf2413_info;
1142
1143                /* Allocate pd_curves for this cal pier */
1144                chinfo[pier].pd_curves =
1145                                calloc(AR5K_EEPROM_N_PD_CURVES,
1146                                       sizeof(struct ath5k_pdgain_info));
1147
1148                if (!chinfo[pier].pd_curves)
1149                        return -ENOMEM;
1150
1151                /* Fill pd_curves */
1152                for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1153
1154                        u8 idx = pdgain_idx[pdg];
1155                        struct ath5k_pdgain_info *pd =
1156                                        &chinfo[pier].pd_curves[idx];
1157
1158                        /* One more point for the highest power
1159                         * curve (lowest gain) */
1160                        if (pdg == ee->ee_pd_gains[mode] - 1)
1161                                pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1162                        else
1163                                pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1164
1165                        /* Allocate pd points for this curve */
1166                        pd->pd_step = calloc(pd->pd_points, sizeof(u8));
1167
1168                        if (!pd->pd_step)
1169                                return -ENOMEM;
1170
1171                        pd->pd_pwr = calloc(pd->pd_points, sizeof(s16));
1172
1173                        if (!pd->pd_pwr)
1174                                return -ENOMEM;
1175
1176                        /* Fill raw dataset
1177                         * convert all pwr levels to
1178                         * quarter dB for RF5112 combatibility */
1179                        pd->pd_step[0] = pcinfo->pddac_i[pdg];
1180                        pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1181
1182                        for (point = 1; point < pd->pd_points; point++) {
1183
1184                                pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1185                                        2 * pcinfo->pwr[pdg][point - 1];
1186
1187                                pd->pd_step[point] = pd->pd_step[point - 1] +
1188                                                pcinfo->pddac[pdg][point - 1];
1189
1190                        }
1191
1192                        /* Highest gain curve -> min power */
1193                        if (pdg == 0)
1194                                chinfo[pier].min_pwr = pd->pd_pwr[0];
1195
1196                        /* Lowest gain curve -> max power */
1197                        if (pdg == ee->ee_pd_gains[mode] - 1)
1198                                chinfo[pier].max_pwr =
1199                                        pd->pd_pwr[pd->pd_points - 1];
1200                }
1201        }
1202
1203        return 0;
1204}
1205
1206/* Parse EEPROM data */
1207static int
1208ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1209{
1210        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1211        struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1212        struct ath5k_chan_pcal_info *chinfo;
1213        u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1214        u32 offset;
1215        int idx, i, ret;
1216        u16 val;
1217        u8 pd_gains = 0;
1218
1219        /* Count how many curves we have and
1220         * identify them (which one of the 4
1221         * available curves we have on each count).
1222         * Curves are stored from higher to
1223         * lower gain so we go backwards */
1224        for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1225                /* ee_x_gain[mode] is x gain mask */
1226                if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1227                        pdgain_idx[pd_gains++] = idx;
1228
1229        }
1230        ee->ee_pd_gains[mode] = pd_gains;
1231
1232        if (pd_gains == 0)
1233                return -EINVAL;
1234
1235        offset = ath5k_cal_data_offset_2413(ee, mode);
1236        switch (mode) {
1237        case AR5K_EEPROM_MODE_11A:
1238                if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1239                        return 0;
1240
1241                ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1242                offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1243                chinfo = ee->ee_pwr_cal_a;
1244                break;
1245        case AR5K_EEPROM_MODE_11B:
1246                if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1247                        return 0;
1248
1249                ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1250                offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1251                chinfo = ee->ee_pwr_cal_b;
1252                break;
1253        case AR5K_EEPROM_MODE_11G:
1254                if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1255                        return 0;
1256
1257                ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1258                offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1259                chinfo = ee->ee_pwr_cal_g;
1260                break;
1261        default:
1262                return -EINVAL;
1263        }
1264
1265        for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1266                pcinfo = &chinfo[i].rf2413_info;
1267
1268                /*
1269                 * Read pwr_i, pddac_i and the first
1270                 * 2 pd points (pwr, pddac)
1271                 */
1272                AR5K_EEPROM_READ(offset++, val);
1273                pcinfo->pwr_i[0] = val & 0x1f;
1274                pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1275                pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1276
1277                AR5K_EEPROM_READ(offset++, val);
1278                pcinfo->pddac[0][0] = val & 0x3f;
1279                pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1280                pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1281
1282                AR5K_EEPROM_READ(offset++, val);
1283                pcinfo->pwr[0][2] = val & 0xf;
1284                pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1285
1286                pcinfo->pwr[0][3] = 0;
1287                pcinfo->pddac[0][3] = 0;
1288
1289                if (pd_gains > 1) {
1290                        /*
1291                         * Pd gain 0 is not the last pd gain
1292                         * so it only has 2 pd points.
1293                         * Continue wih pd gain 1.
1294                         */
1295                        pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1296
1297                        pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1298                        AR5K_EEPROM_READ(offset++, val);
1299                        pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1300
1301                        pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1302                        pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1303
1304                        AR5K_EEPROM_READ(offset++, val);
1305                        pcinfo->pwr[1][1] = val & 0xf;
1306                        pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1307                        pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1308
1309                        pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1310                        AR5K_EEPROM_READ(offset++, val);
1311                        pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1312
1313                        pcinfo->pwr[1][3] = 0;
1314                        pcinfo->pddac[1][3] = 0;
1315                } else if (pd_gains == 1) {
1316                        /*
1317                         * Pd gain 0 is the last one so
1318                         * read the extra point.
1319                         */
1320                        pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1321
1322                        pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1323                        AR5K_EEPROM_READ(offset++, val);
1324                        pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1325                }
1326
1327                /*
1328                 * Proceed with the other pd_gains
1329                 * as above.
1330                 */
1331                if (pd_gains > 2) {
1332                        pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1333                        pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1334
1335                        AR5K_EEPROM_READ(offset++, val);
1336                        pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1337                        pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1338                        pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1339
1340                        pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1341                        AR5K_EEPROM_READ(offset++, val);
1342                        pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1343
1344                        pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1345                        pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1346
1347                        pcinfo->pwr[2][3] = 0;
1348                        pcinfo->pddac[2][3] = 0;
1349                } else if (pd_gains == 2) {
1350                        pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1351                        pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1352                }
1353
1354                if (pd_gains > 3) {
1355                        pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1356                        AR5K_EEPROM_READ(offset++, val);
1357                        pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1358
1359                        pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1360                        pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1361                        pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1362
1363                        AR5K_EEPROM_READ(offset++, val);
1364                        pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1365                        pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1366                        pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1367
1368                        pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1369                        AR5K_EEPROM_READ(offset++, val);
1370                        pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1371
1372                        pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1373                        pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1374
1375                        pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1376                        AR5K_EEPROM_READ(offset++, val);
1377                        pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1378                } else if (pd_gains == 3) {
1379                        pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1380                        AR5K_EEPROM_READ(offset++, val);
1381                        pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1382
1383                        pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1384                }
1385        }
1386
1387        return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1388}
1389
1390
1391/*
1392 * Read per rate target power (this is the maximum tx power
1393 * supported by the card). This info is used when setting
1394 * tx power, no matter the channel.
1395 *
1396 * This also works for v5 EEPROMs.
1397 */
1398static int
1399ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1400{
1401        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1402        struct ath5k_rate_pcal_info *rate_pcal_info;
1403        u8 *rate_target_pwr_num;
1404        u32 offset;
1405        u16 val;
1406        int ret, i;
1407
1408        offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1409        rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1410        switch (mode) {
1411        case AR5K_EEPROM_MODE_11A:
1412                offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1413                rate_pcal_info = ee->ee_rate_tpwr_a;
1414                ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1415                break;
1416        case AR5K_EEPROM_MODE_11B:
1417                offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1418                rate_pcal_info = ee->ee_rate_tpwr_b;
1419                ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1420                break;
1421        case AR5K_EEPROM_MODE_11G:
1422                offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1423                rate_pcal_info = ee->ee_rate_tpwr_g;
1424                ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1425                break;
1426        default:
1427                return -EINVAL;
1428        }
1429
1430        /* Different freq mask for older eeproms (<= v3.2) */
1431        if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1432                for (i = 0; i < (*rate_target_pwr_num); i++) {
1433                        AR5K_EEPROM_READ(offset++, val);
1434                        rate_pcal_info[i].freq =
1435                            ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1436
1437                        rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1438                        rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1439
1440                        AR5K_EEPROM_READ(offset++, val);
1441
1442                        if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1443                            val == 0) {
1444                                (*rate_target_pwr_num) = i;
1445                                break;
1446                        }
1447
1448                        rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1449                        rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1450                        rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1451                }
1452        } else {
1453                for (i = 0; i < (*rate_target_pwr_num); i++) {
1454                        AR5K_EEPROM_READ(offset++, val);
1455                        rate_pcal_info[i].freq =
1456                            ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1457
1458                        rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1459                        rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1460
1461                        AR5K_EEPROM_READ(offset++, val);
1462
1463                        if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1464                            val == 0) {
1465                                (*rate_target_pwr_num) = i;
1466                                break;
1467                        }
1468
1469                        rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1470                        rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1471                        rate_pcal_info[i].target_power_54 = (val & 0x3f);
1472                }
1473        }
1474
1475        return 0;
1476}
1477
1478/*
1479 * Read per channel calibration info from EEPROM
1480 *
1481 * This info is used to calibrate the baseband power table. Imagine
1482 * that for each channel there is a power curve that's hw specific
1483 * (depends on amplifier etc) and we try to "correct" this curve using
1484 * offests we pass on to phy chip (baseband -> before amplifier) so that
1485 * it can use accurate power values when setting tx power (takes amplifier's
1486 * performance on each channel into account).
1487 *
1488 * EEPROM provides us with the offsets for some pre-calibrated channels
1489 * and we have to interpolate to create the full table for these channels and
1490 * also the table for any channel.
1491 */
1492static int
1493ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1494{
1495        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1496        int (*read_pcal)(struct ath5k_hw *hw, int mode);
1497        int mode;
1498        int err;
1499
1500        if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1501                        (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1502                read_pcal = ath5k_eeprom_read_pcal_info_5112;
1503        else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1504                        (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1505                read_pcal = ath5k_eeprom_read_pcal_info_2413;
1506        else
1507                read_pcal = ath5k_eeprom_read_pcal_info_5111;
1508
1509
1510        for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1511        mode++) {
1512                err = read_pcal(ah, mode);
1513                if (err)
1514                        return err;
1515
1516                err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1517                if (err < 0)
1518                        return err;
1519        }
1520
1521        return 0;
1522}
1523
1524static int
1525ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1526{
1527        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1528        struct ath5k_chan_pcal_info *chinfo;
1529        u8 pier, pdg;
1530
1531        switch (mode) {
1532        case AR5K_EEPROM_MODE_11A:
1533                if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1534                        return 0;
1535                chinfo = ee->ee_pwr_cal_a;
1536                break;
1537        case AR5K_EEPROM_MODE_11B:
1538                if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1539                        return 0;
1540                chinfo = ee->ee_pwr_cal_b;
1541                break;
1542        case AR5K_EEPROM_MODE_11G:
1543                if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1544                        return 0;
1545                chinfo = ee->ee_pwr_cal_g;
1546                break;
1547        default:
1548                return -EINVAL;
1549        }
1550
1551        for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1552                if (!chinfo[pier].pd_curves)
1553                        continue;
1554
1555                for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1556                        struct ath5k_pdgain_info *pd =
1557                                        &chinfo[pier].pd_curves[pdg];
1558
1559                        if (pd != NULL) {
1560                                free(pd->pd_step);
1561                                free(pd->pd_pwr);
1562                        }
1563                }
1564
1565                free(chinfo[pier].pd_curves);
1566        }
1567
1568        return 0;
1569}
1570
1571void
1572ath5k_eeprom_detach(struct ath5k_hw *ah)
1573{
1574        u8 mode;
1575
1576        for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1577                ath5k_eeprom_free_pcal_info(ah, mode);
1578}
1579
1580/* Read conformance test limits used for regulatory control */
1581static int
1582ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1583{
1584        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1585        struct ath5k_edge_power *rep;
1586        unsigned int fmask, pmask;
1587        unsigned int ctl_mode;
1588        int ret, i, j;
1589        u32 offset;
1590        u16 val;
1591
1592        pmask = AR5K_EEPROM_POWER_M;
1593        fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1594        offset = AR5K_EEPROM_CTL(ee->ee_version);
1595        ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1596        for (i = 0; i < ee->ee_ctls; i += 2) {
1597                AR5K_EEPROM_READ(offset++, val);
1598                ee->ee_ctl[i] = (val >> 8) & 0xff;
1599                ee->ee_ctl[i + 1] = val & 0xff;
1600        }
1601
1602        offset = AR5K_EEPROM_GROUP8_OFFSET;
1603        if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1604                offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1605                        AR5K_EEPROM_GROUP5_OFFSET;
1606        else
1607                offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1608
1609        rep = ee->ee_ctl_pwr;
1610        for(i = 0; i < ee->ee_ctls; i++) {
1611                switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1612                case AR5K_CTL_11A:
1613                case AR5K_CTL_TURBO:
1614                        ctl_mode = AR5K_EEPROM_MODE_11A;
1615                        break;
1616                default:
1617                        ctl_mode = AR5K_EEPROM_MODE_11G;
1618                        break;
1619                }
1620                if (ee->ee_ctl[i] == 0) {
1621                        if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1622                                offset += 8;
1623                        else
1624                                offset += 7;
1625                        rep += AR5K_EEPROM_N_EDGES;
1626                        continue;
1627                }
1628                if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1629                        for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1630                                AR5K_EEPROM_READ(offset++, val);
1631                                rep[j].freq = (val >> 8) & fmask;
1632                                rep[j + 1].freq = val & fmask;
1633                        }
1634                        for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1635                                AR5K_EEPROM_READ(offset++, val);
1636                                rep[j].edge = (val >> 8) & pmask;
1637                                rep[j].flag = (val >> 14) & 1;
1638                                rep[j + 1].edge = val & pmask;
1639                                rep[j + 1].flag = (val >> 6) & 1;
1640                        }
1641                } else {
1642                        AR5K_EEPROM_READ(offset++, val);
1643                        rep[0].freq = (val >> 9) & fmask;
1644                        rep[1].freq = (val >> 2) & fmask;
1645                        rep[2].freq = (val << 5) & fmask;
1646
1647                        AR5K_EEPROM_READ(offset++, val);
1648                        rep[2].freq |= (val >> 11) & 0x1f;
1649                        rep[3].freq = (val >> 4) & fmask;
1650                        rep[4].freq = (val << 3) & fmask;
1651
1652                        AR5K_EEPROM_READ(offset++, val);
1653                        rep[4].freq |= (val >> 13) & 0x7;
1654                        rep[5].freq = (val >> 6) & fmask;
1655                        rep[6].freq = (val << 1) & fmask;
1656
1657                        AR5K_EEPROM_READ(offset++, val);
1658                        rep[6].freq |= (val >> 15) & 0x1;
1659                        rep[7].freq = (val >> 8) & fmask;
1660
1661                        rep[0].edge = (val >> 2) & pmask;
1662                        rep[1].edge = (val << 4) & pmask;
1663
1664                        AR5K_EEPROM_READ(offset++, val);
1665                        rep[1].edge |= (val >> 12) & 0xf;
1666                        rep[2].edge = (val >> 6) & pmask;
1667                        rep[3].edge = val & pmask;
1668
1669                        AR5K_EEPROM_READ(offset++, val);
1670                        rep[4].edge = (val >> 10) & pmask;
1671                        rep[5].edge = (val >> 4) & pmask;
1672                        rep[6].edge = (val << 2) & pmask;
1673
1674                        AR5K_EEPROM_READ(offset++, val);
1675                        rep[6].edge |= (val >> 14) & 0x3;
1676                        rep[7].edge = (val >> 8) & pmask;
1677                }
1678                for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1679                        rep[j].freq = ath5k_eeprom_bin2freq(ee,
1680                                rep[j].freq, ctl_mode);
1681                }
1682                rep += AR5K_EEPROM_N_EDGES;
1683        }
1684
1685        return 0;
1686}
1687
1688
1689/*
1690 * Initialize eeprom power tables
1691 */
1692int
1693ath5k_eeprom_init(struct ath5k_hw *ah)
1694{
1695        int err;
1696
1697        err = ath5k_eeprom_init_header(ah);
1698        if (err < 0)
1699                return err;
1700
1701        err = ath5k_eeprom_init_modes(ah);
1702        if (err < 0)
1703                return err;
1704
1705        err = ath5k_eeprom_read_pcal_info(ah);
1706        if (err < 0)
1707                return err;
1708
1709        err = ath5k_eeprom_read_ctl_info(ah);
1710        if (err < 0)
1711                return err;
1712
1713        return 0;
1714}
1715
1716/*
1717 * Read the MAC address from eeprom
1718 */
1719int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1720{
1721        u8 mac_d[ETH_ALEN] = {};
1722        u32 total, offset;
1723        u16 data;
1724        int octet, ret;
1725
1726        ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1727        if (ret)
1728                return ret;
1729
1730        for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1731                ret = ath5k_hw_eeprom_read(ah, offset, &data);
1732                if (ret)
1733                        return ret;
1734
1735                total += data;
1736                mac_d[octet + 1] = data & 0xff;
1737                mac_d[octet] = data >> 8;
1738                octet += 2;
1739        }
1740
1741        if (!total || total == 3 * 0xffff)
1742                return -EINVAL;
1743
1744        memcpy(mac, mac_d, ETH_ALEN);
1745
1746        return 0;
1747}
1748
1749int ath5k_eeprom_is_hb63(struct ath5k_hw *ah)
1750{
1751        u16 data;
1752
1753        ath5k_hw_eeprom_read(ah, AR5K_EEPROM_IS_HB63, &data);
1754
1755        if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && data)
1756                return 1;
1757        else
1758                return 0;
1759}
1760
Note: See TracBrowser for help on using the repository browser.