source: bootcd/isolinux/syslinux-6.03/gpxe/src/drivers/net/ath5k/ath5k_phy.c

Last change on this file was e16e8f2, checked in by Edwin Eefting <edwin@datux.nl>, 3 years ago

bootstuff

  • Property mode set to 100644
File size: 66.6 KB
Line 
1/*
2 * PHY functions
3 *
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8 *
9 * Lightly modified for gPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>.
10 *
11 * Permission to use, copy, modify, and distribute this software for any
12 * purpose with or without fee is hereby granted, provided that the above
13 * copyright notice and this permission notice appear in all copies.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
16 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
17 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
18 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
19 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
20 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
21 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 *
23 */
24
25FILE_LICENCE ( MIT );
26
27#define _ATH5K_PHY
28
29#include <unistd.h>
30#include <stdlib.h>
31
32#include "ath5k.h"
33#include "reg.h"
34#include "base.h"
35#include "rfbuffer.h"
36#include "rfgain.h"
37
38static inline int min(int x, int y)
39{
40        return (x < y) ? x : y;
41}
42
43static inline int max(int x, int y)
44{
45        return (x > y) ? x : y;
46}
47
48/*
49 * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
50 */
51static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
52                                        const struct ath5k_rf_reg *rf_regs,
53                                        u32 val, u8 reg_id, int set)
54{
55        const struct ath5k_rf_reg *rfreg = NULL;
56        u8 offset, bank, num_bits, col, position;
57        u16 entry;
58        u32 mask, data, last_bit, bits_shifted, first_bit;
59        u32 *rfb;
60        s32 bits_left;
61        unsigned i;
62
63        data = 0;
64        rfb = ah->ah_rf_banks;
65
66        for (i = 0; i < ah->ah_rf_regs_count; i++) {
67                if (rf_regs[i].index == reg_id) {
68                        rfreg = &rf_regs[i];
69                        break;
70                }
71        }
72
73        if (rfb == NULL || rfreg == NULL) {
74                DBG("ath5k: RF register not found!\n");
75                /* should not happen */
76                return 0;
77        }
78
79        bank = rfreg->bank;
80        num_bits = rfreg->field.len;
81        first_bit = rfreg->field.pos;
82        col = rfreg->field.col;
83
84        /* first_bit is an offset from bank's
85         * start. Since we have all banks on
86         * the same array, we use this offset
87         * to mark each bank's start */
88        offset = ah->ah_offset[bank];
89
90        /* Boundary check */
91        if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
92                DBG("ath5k: RF invalid values at offset %d\n", offset);
93                return 0;
94        }
95
96        entry = ((first_bit - 1) / 8) + offset;
97        position = (first_bit - 1) % 8;
98
99        if (set)
100                data = ath5k_hw_bitswap(val, num_bits);
101
102        for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
103        position = 0, entry++) {
104
105                last_bit = (position + bits_left > 8) ? 8 :
106                                        position + bits_left;
107
108                mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
109                                                                (col * 8);
110
111                if (set) {
112                        rfb[entry] &= ~mask;
113                        rfb[entry] |= ((data << position) << (col * 8)) & mask;
114                        data >>= (8 - position);
115                } else {
116                        data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
117                                << bits_shifted;
118                        bits_shifted += last_bit - position;
119                }
120
121                bits_left -= 8 - position;
122        }
123
124        data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
125
126        return data;
127}
128
129/**********************\
130* RF Gain optimization *
131\**********************/
132
133/*
134 * This code is used to optimize rf gain on different environments
135 * (temprature mostly) based on feedback from a power detector.
136 *
137 * It's only used on RF5111 and RF5112, later RF chips seem to have
138 * auto adjustment on hw -notice they have a much smaller BANK 7 and
139 * no gain optimization ladder-.
140 *
141 * For more infos check out this patent doc
142 * http://www.freepatentsonline.com/7400691.html
143 *
144 * This paper describes power drops as seen on the receiver due to
145 * probe packets
146 * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
147 * %20of%20Power%20Control.pdf
148 *
149 * And this is the MadWiFi bug entry related to the above
150 * http://madwifi-project.org/ticket/1659
151 * with various measurements and diagrams
152 *
153 * TODO: Deal with power drops due to probes by setting an apropriate
154 * tx power on the probe packets ! Make this part of the calibration process.
155 */
156
157/* Initialize ah_gain durring attach */
158int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
159{
160        /* Initialize the gain optimization values */
161        switch (ah->ah_radio) {
162        case AR5K_RF5111:
163                ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
164                ah->ah_gain.g_low = 20;
165                ah->ah_gain.g_high = 35;
166                ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
167                break;
168        case AR5K_RF5112:
169                ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
170                ah->ah_gain.g_low = 20;
171                ah->ah_gain.g_high = 85;
172                ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
173                break;
174        default:
175                return -EINVAL;
176        }
177
178        return 0;
179}
180
181/* Schedule a gain probe check on the next transmited packet.
182 * That means our next packet is going to be sent with lower
183 * tx power and a Peak to Average Power Detector (PAPD) will try
184 * to measure the gain.
185 *
186 * TODO: Use propper tx power setting for the probe packet so
187 * that we don't observe a serious power drop on the receiver
188 *
189 * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
190 * just after we enable the probe so that we don't mess with
191 * standard traffic ? Maybe it's time to use sw interrupts and
192 * a probe tasklet !!!
193 */
194static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
195{
196
197        /* Skip if gain calibration is inactive or
198         * we already handle a probe request */
199        if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
200                return;
201
202        /* Send the packet with 2dB below max power as
203         * patent doc suggest */
204        ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4,
205                        AR5K_PHY_PAPD_PROBE_TXPOWER) |
206                        AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
207
208        ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
209
210}
211
212/* Calculate gain_F measurement correction
213 * based on the current step for RF5112 rev. 2 */
214static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
215{
216        u32 mix, step;
217        u32 *rf;
218        const struct ath5k_gain_opt *go;
219        const struct ath5k_gain_opt_step *g_step;
220        const struct ath5k_rf_reg *rf_regs;
221
222        /* Only RF5112 Rev. 2 supports it */
223        if ((ah->ah_radio != AR5K_RF5112) ||
224        (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
225                return 0;
226
227        go = &rfgain_opt_5112;
228        rf_regs = rf_regs_5112a;
229        ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
230
231        g_step = &go->go_step[ah->ah_gain.g_step_idx];
232
233        if (ah->ah_rf_banks == NULL)
234                return 0;
235
236        rf = ah->ah_rf_banks;
237        ah->ah_gain.g_f_corr = 0;
238
239        /* No VGA (Variable Gain Amplifier) override, skip */
240        if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, 0) != 1)
241                return 0;
242
243        /* Mix gain stepping */
244        step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, 0);
245
246        /* Mix gain override */
247        mix = g_step->gos_param[0];
248
249        switch (mix) {
250        case 3:
251                ah->ah_gain.g_f_corr = step * 2;
252                break;
253        case 2:
254                ah->ah_gain.g_f_corr = (step - 5) * 2;
255                break;
256        case 1:
257                ah->ah_gain.g_f_corr = step;
258                break;
259        default:
260                ah->ah_gain.g_f_corr = 0;
261                break;
262        }
263
264        return ah->ah_gain.g_f_corr;
265}
266
267/* Check if current gain_F measurement is in the range of our
268 * power detector windows. If we get a measurement outside range
269 * we know it's not accurate (detectors can't measure anything outside
270 * their detection window) so we must ignore it */
271static int ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
272{
273        const struct ath5k_rf_reg *rf_regs;
274        u32 step, mix_ovr, level[4];
275        u32 *rf;
276
277        if (ah->ah_rf_banks == NULL)
278                return 0;
279
280        rf = ah->ah_rf_banks;
281
282        if (ah->ah_radio == AR5K_RF5111) {
283
284                rf_regs = rf_regs_5111;
285                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
286
287                step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
288                        0);
289
290                level[0] = 0;
291                level[1] = (step == 63) ? 50 : step + 4;
292                level[2] = (step != 63) ? 64 : level[0];
293                level[3] = level[2] + 50 ;
294
295                ah->ah_gain.g_high = level[3] -
296                        (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
297                ah->ah_gain.g_low = level[0] +
298                        (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
299        } else {
300
301                rf_regs = rf_regs_5112;
302                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
303
304                mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
305                        0);
306
307                level[0] = level[2] = 0;
308
309                if (mix_ovr == 1) {
310                        level[1] = level[3] = 83;
311                } else {
312                        level[1] = level[3] = 107;
313                        ah->ah_gain.g_high = 55;
314                }
315        }
316
317        return (ah->ah_gain.g_current >= level[0] &&
318                        ah->ah_gain.g_current <= level[1]) ||
319                (ah->ah_gain.g_current >= level[2] &&
320                        ah->ah_gain.g_current <= level[3]);
321}
322
323/* Perform gain_F adjustment by choosing the right set
324 * of parameters from rf gain optimization ladder */
325static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
326{
327        const struct ath5k_gain_opt *go;
328        const struct ath5k_gain_opt_step *g_step;
329        int ret = 0;
330
331        switch (ah->ah_radio) {
332        case AR5K_RF5111:
333                go = &rfgain_opt_5111;
334                break;
335        case AR5K_RF5112:
336                go = &rfgain_opt_5112;
337                break;
338        default:
339                return 0;
340        }
341
342        g_step = &go->go_step[ah->ah_gain.g_step_idx];
343
344        if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
345
346                /* Reached maximum */
347                if (ah->ah_gain.g_step_idx == 0)
348                        return -1;
349
350                for (ah->ah_gain.g_target = ah->ah_gain.g_current;
351                                ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
352                                ah->ah_gain.g_step_idx > 0;
353                                g_step = &go->go_step[ah->ah_gain.g_step_idx])
354                        ah->ah_gain.g_target -= 2 *
355                            (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
356                            g_step->gos_gain);
357
358                ret = 1;
359                goto done;
360        }
361
362        if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
363
364                /* Reached minimum */
365                if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
366                        return -2;
367
368                for (ah->ah_gain.g_target = ah->ah_gain.g_current;
369                                ah->ah_gain.g_target <= ah->ah_gain.g_low &&
370                                ah->ah_gain.g_step_idx < go->go_steps_count-1;
371                                g_step = &go->go_step[ah->ah_gain.g_step_idx])
372                        ah->ah_gain.g_target -= 2 *
373                            (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
374                            g_step->gos_gain);
375
376                ret = 2;
377                goto done;
378        }
379
380done:
381        DBG2("ath5k RF adjust: ret %d, gain step %d, current gain %d, "
382             "target gain %d\n", ret, ah->ah_gain.g_step_idx,
383             ah->ah_gain.g_current, ah->ah_gain.g_target);
384
385        return ret;
386}
387
388/* Main callback for thermal rf gain calibration engine
389 * Check for a new gain reading and schedule an adjustment
390 * if needed.
391 *
392 * TODO: Use sw interrupt to schedule reset if gain_F needs
393 * adjustment */
394enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
395{
396        u32 data, type;
397        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
398
399        if (ah->ah_rf_banks == NULL ||
400        ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
401                return AR5K_RFGAIN_INACTIVE;
402
403        /* No check requested, either engine is inactive
404         * or an adjustment is already requested */
405        if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
406                goto done;
407
408        /* Read the PAPD (Peak to Average Power Detector)
409         * register */
410        data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
411
412        /* No probe is scheduled, read gain_F measurement */
413        if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
414                ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
415                type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
416
417                /* If tx packet is CCK correct the gain_F measurement
418                 * by cck ofdm gain delta */
419                if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
420                        if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
421                                ah->ah_gain.g_current +=
422                                        ee->ee_cck_ofdm_gain_delta;
423                        else
424                                ah->ah_gain.g_current +=
425                                        AR5K_GAIN_CCK_PROBE_CORR;
426                }
427
428                /* Further correct gain_F measurement for
429                 * RF5112A radios */
430                if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
431                        ath5k_hw_rf_gainf_corr(ah);
432                        ah->ah_gain.g_current =
433                                ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
434                                (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
435                                0;
436                }
437
438                /* Check if measurement is ok and if we need
439                 * to adjust gain, schedule a gain adjustment,
440                 * else switch back to the acive state */
441                if (ath5k_hw_rf_check_gainf_readback(ah) &&
442                AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
443                ath5k_hw_rf_gainf_adjust(ah)) {
444                        ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
445                } else {
446                        ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
447                }
448        }
449
450done:
451        return ah->ah_gain.g_state;
452}
453
454/* Write initial rf gain table to set the RF sensitivity
455 * this one works on all RF chips and has nothing to do
456 * with gain_F calibration */
457int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
458{
459        const struct ath5k_ini_rfgain *ath5k_rfg;
460        unsigned int i, size;
461
462        switch (ah->ah_radio) {
463        case AR5K_RF5111:
464                ath5k_rfg = rfgain_5111;
465                size = ARRAY_SIZE(rfgain_5111);
466                break;
467        case AR5K_RF5112:
468                ath5k_rfg = rfgain_5112;
469                size = ARRAY_SIZE(rfgain_5112);
470                break;
471        case AR5K_RF2413:
472                ath5k_rfg = rfgain_2413;
473                size = ARRAY_SIZE(rfgain_2413);
474                break;
475        case AR5K_RF2316:
476                ath5k_rfg = rfgain_2316;
477                size = ARRAY_SIZE(rfgain_2316);
478                break;
479        case AR5K_RF5413:
480                ath5k_rfg = rfgain_5413;
481                size = ARRAY_SIZE(rfgain_5413);
482                break;
483        case AR5K_RF2317:
484        case AR5K_RF2425:
485                ath5k_rfg = rfgain_2425;
486                size = ARRAY_SIZE(rfgain_2425);
487                break;
488        default:
489                return -EINVAL;
490        }
491
492        switch (freq) {
493        case AR5K_INI_RFGAIN_2GHZ:
494        case AR5K_INI_RFGAIN_5GHZ:
495                break;
496        default:
497                return -EINVAL;
498        }
499
500        for (i = 0; i < size; i++) {
501                AR5K_REG_WAIT(i);
502                ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
503                        (u32)ath5k_rfg[i].rfg_register);
504        }
505
506        return 0;
507}
508
509
510
511/********************\
512* RF Registers setup *
513\********************/
514
515
516/*
517 * Setup RF registers by writing rf buffer on hw
518 */
519int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct net80211_channel *channel,
520                unsigned int mode)
521{
522        const struct ath5k_rf_reg *rf_regs;
523        const struct ath5k_ini_rfbuffer *ini_rfb;
524        const struct ath5k_gain_opt *go = NULL;
525        const struct ath5k_gain_opt_step *g_step;
526        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
527        u8 ee_mode = 0;
528        u32 *rfb;
529        int obdb = -1, bank = -1;
530        unsigned i;
531
532        switch (ah->ah_radio) {
533        case AR5K_RF5111:
534                rf_regs = rf_regs_5111;
535                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
536                ini_rfb = rfb_5111;
537                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
538                go = &rfgain_opt_5111;
539                break;
540        case AR5K_RF5112:
541                if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
542                        rf_regs = rf_regs_5112a;
543                        ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
544                        ini_rfb = rfb_5112a;
545                        ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
546                } else {
547                        rf_regs = rf_regs_5112;
548                        ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
549                        ini_rfb = rfb_5112;
550                        ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
551                }
552                go = &rfgain_opt_5112;
553                break;
554        case AR5K_RF2413:
555                rf_regs = rf_regs_2413;
556                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
557                ini_rfb = rfb_2413;
558                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
559                break;
560        case AR5K_RF2316:
561                rf_regs = rf_regs_2316;
562                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
563                ini_rfb = rfb_2316;
564                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
565                break;
566        case AR5K_RF5413:
567                rf_regs = rf_regs_5413;
568                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
569                ini_rfb = rfb_5413;
570                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
571                break;
572        case AR5K_RF2317:
573                rf_regs = rf_regs_2425;
574                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
575                ini_rfb = rfb_2317;
576                ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
577                break;
578        case AR5K_RF2425:
579                rf_regs = rf_regs_2425;
580                ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
581                if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
582                        ini_rfb = rfb_2425;
583                        ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
584                } else {
585                        ini_rfb = rfb_2417;
586                        ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
587                }
588                break;
589        default:
590                return -EINVAL;
591        }
592
593        /* If it's the first time we set rf buffer, allocate
594         * ah->ah_rf_banks based on ah->ah_rf_banks_size
595         * we set above */
596        if (ah->ah_rf_banks == NULL) {
597                ah->ah_rf_banks = malloc(sizeof(u32) * ah->ah_rf_banks_size);
598                if (ah->ah_rf_banks == NULL) {
599                        return -ENOMEM;
600                }
601        }
602
603        /* Copy values to modify them */
604        rfb = ah->ah_rf_banks;
605
606        for (i = 0; i < ah->ah_rf_banks_size; i++) {
607                if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
608                        DBG("ath5k: invalid RF register bank\n");
609                        return -EINVAL;
610                }
611
612                /* Bank changed, write down the offset */
613                if (bank != ini_rfb[i].rfb_bank) {
614                        bank = ini_rfb[i].rfb_bank;
615                        ah->ah_offset[bank] = i;
616                }
617
618                rfb[i] = ini_rfb[i].rfb_mode_data[mode];
619        }
620
621        /* Set Output and Driver bias current (OB/DB) */
622        if (channel->hw_value & CHANNEL_2GHZ) {
623
624                if (channel->hw_value & CHANNEL_CCK)
625                        ee_mode = AR5K_EEPROM_MODE_11B;
626                else
627                        ee_mode = AR5K_EEPROM_MODE_11G;
628
629                /* For RF511X/RF211X combination we
630                 * use b_OB and b_DB parameters stored
631                 * in eeprom on ee->ee_ob[ee_mode][0]
632                 *
633                 * For all other chips we use OB/DB for 2Ghz
634                 * stored in the b/g modal section just like
635                 * 802.11a on ee->ee_ob[ee_mode][1] */
636                if ((ah->ah_radio == AR5K_RF5111) ||
637                (ah->ah_radio == AR5K_RF5112))
638                        obdb = 0;
639                else
640                        obdb = 1;
641
642                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
643                                                AR5K_RF_OB_2GHZ, 1);
644
645                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
646                                                AR5K_RF_DB_2GHZ, 1);
647
648        /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
649        } else if ((channel->hw_value & CHANNEL_5GHZ) ||
650                        (ah->ah_radio == AR5K_RF5111)) {
651
652                /* For 11a, Turbo and XR we need to choose
653                 * OB/DB based on frequency range */
654                ee_mode = AR5K_EEPROM_MODE_11A;
655                obdb =   channel->center_freq >= 5725 ? 3 :
656                        (channel->center_freq >= 5500 ? 2 :
657                        (channel->center_freq >= 5260 ? 1 :
658                         (channel->center_freq > 4000 ? 0 : -1)));
659
660                if (obdb < 0)
661                        return -EINVAL;
662
663                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
664                                                AR5K_RF_OB_5GHZ, 1);
665
666                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
667                                                AR5K_RF_DB_5GHZ, 1);
668        }
669
670        g_step = &go->go_step[ah->ah_gain.g_step_idx];
671
672        /* Bank Modifications (chip-specific) */
673        if (ah->ah_radio == AR5K_RF5111) {
674
675                /* Set gain_F settings according to current step */
676                if (channel->hw_value & CHANNEL_OFDM) {
677
678                        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
679                                        AR5K_PHY_FRAME_CTL_TX_CLIP,
680                                        g_step->gos_param[0]);
681
682                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
683                                                        AR5K_RF_PWD_90, 1);
684
685                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
686                                                        AR5K_RF_PWD_84, 1);
687
688                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
689                                                AR5K_RF_RFGAIN_SEL, 1);
690
691                        /* We programmed gain_F parameters, switch back
692                         * to active state */
693                        ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
694
695                }
696
697                /* Bank 6/7 setup */
698
699                ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
700                                                AR5K_RF_PWD_XPD, 1);
701
702                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
703                                                AR5K_RF_XPD_GAIN, 1);
704
705                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
706                                                AR5K_RF_GAIN_I, 1);
707
708                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
709                                                AR5K_RF_PLO_SEL, 1);
710
711                /* TODO: Half/quarter channel support */
712        }
713
714        if (ah->ah_radio == AR5K_RF5112) {
715
716                /* Set gain_F settings according to current step */
717                if (channel->hw_value & CHANNEL_OFDM) {
718
719                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
720                                                AR5K_RF_MIXGAIN_OVR, 1);
721
722                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
723                                                AR5K_RF_PWD_138, 1);
724
725                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
726                                                AR5K_RF_PWD_137, 1);
727
728                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
729                                                AR5K_RF_PWD_136, 1);
730
731                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
732                                                AR5K_RF_PWD_132, 1);
733
734                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
735                                                AR5K_RF_PWD_131, 1);
736
737                        ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
738                                                AR5K_RF_PWD_130, 1);
739
740                        /* We programmed gain_F parameters, switch back
741                         * to active state */
742                        ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
743                }
744
745                /* Bank 6/7 setup */
746
747                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
748                                                AR5K_RF_XPD_SEL, 1);
749
750                if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
751                        /* Rev. 1 supports only one xpd */
752                        ath5k_hw_rfb_op(ah, rf_regs,
753                                                ee->ee_x_gain[ee_mode],
754                                                AR5K_RF_XPD_GAIN, 1);
755
756                } else {
757                        /* TODO: Set high and low gain bits */
758                        ath5k_hw_rfb_op(ah, rf_regs,
759                                                ee->ee_x_gain[ee_mode],
760                                                AR5K_RF_PD_GAIN_LO, 1);
761                        ath5k_hw_rfb_op(ah, rf_regs,
762                                                ee->ee_x_gain[ee_mode],
763                                                AR5K_RF_PD_GAIN_HI, 1);
764
765                        /* Lower synth voltage on Rev 2 */
766                        ath5k_hw_rfb_op(ah, rf_regs, 2,
767                                        AR5K_RF_HIGH_VC_CP, 1);
768
769                        ath5k_hw_rfb_op(ah, rf_regs, 2,
770                                        AR5K_RF_MID_VC_CP, 1);
771
772                        ath5k_hw_rfb_op(ah, rf_regs, 2,
773                                        AR5K_RF_LOW_VC_CP, 1);
774
775                        ath5k_hw_rfb_op(ah, rf_regs, 2,
776                                        AR5K_RF_PUSH_UP, 1);
777
778                        /* Decrease power consumption on 5213+ BaseBand */
779                        if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
780                                ath5k_hw_rfb_op(ah, rf_regs, 1,
781                                                AR5K_RF_PAD2GND, 1);
782
783                                ath5k_hw_rfb_op(ah, rf_regs, 1,
784                                                AR5K_RF_XB2_LVL, 1);
785
786                                ath5k_hw_rfb_op(ah, rf_regs, 1,
787                                                AR5K_RF_XB5_LVL, 1);
788
789                                ath5k_hw_rfb_op(ah, rf_regs, 1,
790                                                AR5K_RF_PWD_167, 1);
791
792                                ath5k_hw_rfb_op(ah, rf_regs, 1,
793                                                AR5K_RF_PWD_166, 1);
794                        }
795                }
796
797                ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
798                                                AR5K_RF_GAIN_I, 1);
799
800                /* TODO: Half/quarter channel support */
801
802        }
803
804        if (ah->ah_radio == AR5K_RF5413 &&
805        channel->hw_value & CHANNEL_2GHZ) {
806
807                ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
808                                                                        1);
809
810                /* Set optimum value for early revisions (on pci-e chips) */
811                if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
812                ah->ah_mac_srev < AR5K_SREV_AR5413)
813                        ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
814                                                AR5K_RF_PWD_ICLOBUF_2G, 1);
815
816        }
817
818        /* Write RF banks on hw */
819        for (i = 0; i < ah->ah_rf_banks_size; i++) {
820                AR5K_REG_WAIT(i);
821                ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
822        }
823
824        return 0;
825}
826
827
828/**************************\
829  PHY/RF channel functions
830\**************************/
831
832/*
833 * Check if a channel is supported
834 */
835int ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
836{
837        /* Check if the channel is in our supported range */
838        if (flags & CHANNEL_2GHZ) {
839                if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
840                    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
841                        return 1;
842        } else if (flags & CHANNEL_5GHZ)
843                if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
844                    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
845                        return 1;
846
847        return 0;
848}
849
850/*
851 * Convertion needed for RF5110
852 */
853static u32 ath5k_hw_rf5110_chan2athchan(struct net80211_channel *channel)
854{
855        u32 athchan;
856
857        /*
858         * Convert IEEE channel/MHz to an internal channel value used
859         * by the AR5210 chipset. This has not been verified with
860         * newer chipsets like the AR5212A who have a completely
861         * different RF/PHY part.
862         */
863        athchan = (ath5k_hw_bitswap((ath5k_freq_to_channel(channel->center_freq)
864                                     - 24) / 2, 5) << 1)
865                | (1 << 6) | 0x1;
866        return athchan;
867}
868
869/*
870 * Set channel on RF5110
871 */
872static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
873                struct net80211_channel *channel)
874{
875        u32 data;
876
877        /*
878         * Set the channel and wait
879         */
880        data = ath5k_hw_rf5110_chan2athchan(channel);
881        ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
882        ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
883        mdelay(1);
884
885        return 0;
886}
887
888/*
889 * Convertion needed for 5111
890 */
891static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
892                struct ath5k_athchan_2ghz *athchan)
893{
894        int channel;
895
896        /* Cast this value to catch negative channel numbers (>= -19) */
897        channel = (int)ieee;
898
899        /*
900         * Map 2GHz IEEE channel to 5GHz Atheros channel
901         */
902        if (channel <= 13) {
903                athchan->a2_athchan = 115 + channel;
904                athchan->a2_flags = 0x46;
905        } else if (channel == 14) {
906                athchan->a2_athchan = 124;
907                athchan->a2_flags = 0x44;
908        } else if (channel >= 15 && channel <= 26) {
909                athchan->a2_athchan = ((channel - 14) * 4) + 132;
910                athchan->a2_flags = 0x46;
911        } else
912                return -EINVAL;
913
914        return 0;
915}
916
917/*
918 * Set channel on 5111
919 */
920static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
921                struct net80211_channel *channel)
922{
923        struct ath5k_athchan_2ghz ath5k_channel_2ghz;
924        unsigned int ath5k_channel = ath5k_freq_to_channel(channel->center_freq);
925        u32 data0, data1, clock;
926        int ret;
927
928        /*
929         * Set the channel on the RF5111 radio
930         */
931        data0 = data1 = 0;
932
933        if (channel->hw_value & CHANNEL_2GHZ) {
934                /* Map 2GHz channel to 5GHz Atheros channel ID */
935                ret = ath5k_hw_rf5111_chan2athchan(ath5k_channel,
936                                                   &ath5k_channel_2ghz);
937                if (ret)
938                        return ret;
939
940                ath5k_channel = ath5k_channel_2ghz.a2_athchan;
941                data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
942                    << 5) | (1 << 4);
943        }
944
945        if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
946                clock = 1;
947                data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
948                        (clock << 1) | (1 << 10) | 1;
949        } else {
950                clock = 0;
951                data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
952                        << 2) | (clock << 1) | (1 << 10) | 1;
953        }
954
955        ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
956                        AR5K_RF_BUFFER);
957        ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
958                        AR5K_RF_BUFFER_CONTROL_3);
959
960        return 0;
961}
962
963/*
964 * Set channel on 5112 and newer
965 */
966static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
967                struct net80211_channel *channel)
968{
969        u32 data, data0, data1, data2;
970        u16 c;
971
972        data = data0 = data1 = data2 = 0;
973        c = channel->center_freq;
974
975        if (c < 4800) {
976                if (!((c - 2224) % 5)) {
977                        data0 = ((2 * (c - 704)) - 3040) / 10;
978                        data1 = 1;
979                } else if (!((c - 2192) % 5)) {
980                        data0 = ((2 * (c - 672)) - 3040) / 10;
981                        data1 = 0;
982                } else
983                        return -EINVAL;
984
985                data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
986        } else if ((c - (c % 5)) != 2 || c > 5435) {
987                if (!(c % 20) && c >= 5120) {
988                        data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
989                        data2 = ath5k_hw_bitswap(3, 2);
990                } else if (!(c % 10)) {
991                        data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
992                        data2 = ath5k_hw_bitswap(2, 2);
993                } else if (!(c % 5)) {
994                        data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
995                        data2 = ath5k_hw_bitswap(1, 2);
996                } else
997                        return -EINVAL;
998        } else {
999                data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1000                data2 = ath5k_hw_bitswap(0, 2);
1001        }
1002
1003        data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1004
1005        ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1006        ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1007
1008        return 0;
1009}
1010
1011/*
1012 * Set the channel on the RF2425
1013 */
1014static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1015                struct net80211_channel *channel)
1016{
1017        u32 data, data0, data2;
1018        u16 c;
1019
1020        data = data0 = data2 = 0;
1021        c = channel->center_freq;
1022
1023        if (c < 4800) {
1024                data0 = ath5k_hw_bitswap((c - 2272), 8);
1025                data2 = 0;
1026        /* ? 5GHz ? */
1027        } else if ((c - (c % 5)) != 2 || c > 5435) {
1028                if (!(c % 20) && c < 5120)
1029                        data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1030                else if (!(c % 10))
1031                        data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1032                else if (!(c % 5))
1033                        data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1034                else
1035                        return -EINVAL;
1036                data2 = ath5k_hw_bitswap(1, 2);
1037        } else {
1038                data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8);
1039                data2 = ath5k_hw_bitswap(0, 2);
1040        }
1041
1042        data = (data0 << 4) | data2 << 2 | 0x1001;
1043
1044        ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1045        ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1046
1047        return 0;
1048}
1049
1050/*
1051 * Set a channel on the radio chip
1052 */
1053int ath5k_hw_channel(struct ath5k_hw *ah, struct net80211_channel *channel)
1054{
1055        int ret;
1056        /*
1057         * Check bounds supported by the PHY (we don't care about regultory
1058         * restrictions at this point). Note: hw_value already has the band
1059         * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1060         * of the band by that */
1061        if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1062                DBG("ath5k: channel frequency (%d MHz) out of supported "
1063                    "range\n", channel->center_freq);
1064                return -EINVAL;
1065        }
1066
1067        /*
1068         * Set the channel and wait
1069         */
1070        switch (ah->ah_radio) {
1071        case AR5K_RF5110:
1072                ret = ath5k_hw_rf5110_channel(ah, channel);
1073                break;
1074        case AR5K_RF5111:
1075                ret = ath5k_hw_rf5111_channel(ah, channel);
1076                break;
1077        case AR5K_RF2425:
1078                ret = ath5k_hw_rf2425_channel(ah, channel);
1079                break;
1080        default:
1081                ret = ath5k_hw_rf5112_channel(ah, channel);
1082                break;
1083        }
1084
1085        if (ret) {
1086                DBG("ath5k: setting channel failed: %s\n", strerror(ret));
1087                return ret;
1088        }
1089
1090        /* Set JAPAN setting for channel 14 */
1091        if (channel->center_freq == 2484) {
1092                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1093                                AR5K_PHY_CCKTXCTL_JAPAN);
1094        } else {
1095                AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1096                                AR5K_PHY_CCKTXCTL_WORLD);
1097        }
1098
1099        ah->ah_current_channel = channel;
1100        ah->ah_turbo = (channel->hw_value == CHANNEL_T ? 1 : 0);
1101
1102        return 0;
1103}
1104
1105/*****************\
1106  PHY calibration
1107\*****************/
1108
1109/**
1110 * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration
1111 *
1112 * @ah: struct ath5k_hw pointer we are operating on
1113 * @freq: the channel frequency, just used for error logging
1114 *
1115 * This function performs a noise floor calibration of the PHY and waits for
1116 * it to complete. Then the noise floor value is compared to some maximum
1117 * noise floor we consider valid.
1118 *
1119 * Note that this is different from what the madwifi HAL does: it reads the
1120 * noise floor and afterwards initiates the calibration. Since the noise floor
1121 * calibration can take some time to finish, depending on the current channel
1122 * use, that avoids the occasional timeout warnings we are seeing now.
1123 *
1124 * See the following link for an Atheros patent on noise floor calibration:
1125 * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \
1126 * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7
1127 *
1128 * XXX: Since during noise floor calibration antennas are detached according to
1129 * the patent, we should stop tx queues here.
1130 */
1131int
1132ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq)
1133{
1134        int ret;
1135        unsigned int i;
1136        s32 noise_floor;
1137
1138        /*
1139         * Enable noise floor calibration
1140         */
1141        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1142                                AR5K_PHY_AGCCTL_NF);
1143
1144        ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1145                        AR5K_PHY_AGCCTL_NF, 0, 0);
1146
1147        if (ret) {
1148                DBG("ath5k: noise floor calibration timeout (%d MHz)\n", freq);
1149                return -EAGAIN;
1150        }
1151
1152        /* Wait until the noise floor is calibrated and read the value */
1153        for (i = 20; i > 0; i--) {
1154                mdelay(1);
1155                noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1156                noise_floor = AR5K_PHY_NF_RVAL(noise_floor);
1157                if (noise_floor & AR5K_PHY_NF_ACTIVE) {
1158                        noise_floor = AR5K_PHY_NF_AVAL(noise_floor);
1159
1160                        if (noise_floor <= AR5K_TUNE_NOISE_FLOOR)
1161                                break;
1162                }
1163        }
1164
1165        DBG2("ath5k: noise floor %d\n", noise_floor);
1166
1167        if (noise_floor > AR5K_TUNE_NOISE_FLOOR) {
1168                DBG("ath5k: noise floor calibration failed (%d MHz)\n", freq);
1169                return -EAGAIN;
1170        }
1171
1172        ah->ah_noise_floor = noise_floor;
1173
1174        return 0;
1175}
1176
1177/*
1178 * Perform a PHY calibration on RF5110
1179 * -Fix BPSK/QAM Constellation (I/Q correction)
1180 * -Calculate Noise Floor
1181 */
1182static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1183                struct net80211_channel *channel)
1184{
1185        u32 phy_sig, phy_agc, phy_sat, beacon;
1186        int ret;
1187
1188        /*
1189         * Disable beacons and RX/TX queues, wait
1190         */
1191        AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1192                AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1193        beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1194        ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1195
1196        mdelay(2);
1197
1198        /*
1199         * Set the channel (with AGC turned off)
1200         */
1201        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1202        udelay(10);
1203        ret = ath5k_hw_channel(ah, channel);
1204
1205        /*
1206         * Activate PHY and wait
1207         */
1208        ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1209        mdelay(1);
1210
1211        AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1212
1213        if (ret)
1214                return ret;
1215
1216        /*
1217         * Calibrate the radio chip
1218         */
1219
1220        /* Remember normal state */
1221        phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1222        phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1223        phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1224
1225        /* Update radio registers */
1226        ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1227                AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1228
1229        ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1230                        AR5K_PHY_AGCCOARSE_LO)) |
1231                AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1232                AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1233
1234        ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1235                        AR5K_PHY_ADCSAT_THR)) |
1236                AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1237                AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1238
1239        udelay(20);
1240
1241        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1242        udelay(10);
1243        ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1244        AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1245
1246        mdelay(1);
1247
1248        /*
1249         * Enable calibration and wait until completion
1250         */
1251        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1252
1253        ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1254                        AR5K_PHY_AGCCTL_CAL, 0, 0);
1255
1256        /* Reset to normal state */
1257        ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1258        ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1259        ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1260
1261        if (ret) {
1262                DBG("ath5k: calibration timeout (%d MHz)\n",
1263                    channel->center_freq);
1264                return ret;
1265        }
1266
1267        ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1268
1269        /*
1270         * Re-enable RX/TX and beacons
1271         */
1272        AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1273                AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1274        ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1275
1276        return 0;
1277}
1278
1279/*
1280 * Perform a PHY calibration on RF5111/5112 and newer chips
1281 */
1282static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah,
1283                struct net80211_channel *channel)
1284{
1285        u32 i_pwr, q_pwr;
1286        s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1287        int i;
1288
1289        if (!ah->ah_calibration ||
1290                ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1291                goto done;
1292
1293        /* Calibration has finished, get the results and re-run */
1294        for (i = 0; i <= 10; i++) {
1295                iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1296                i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1297                q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1298        }
1299
1300        i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1301        q_coffd = q_pwr >> 7;
1302
1303        /* No correction */
1304        if (i_coffd == 0 || q_coffd == 0)
1305                goto done;
1306
1307        i_coff = ((-iq_corr) / i_coffd) & 0x3f;
1308
1309        /* Boundary check */
1310        if (i_coff > 31)
1311                i_coff = 31;
1312        if (i_coff < -32)
1313                i_coff = -32;
1314
1315        q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f;
1316
1317        /* Boundary check */
1318        if (q_coff > 15)
1319                q_coff = 15;
1320        if (q_coff < -16)
1321                q_coff = -16;
1322
1323        /* Commit new I/Q value */
1324        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE |
1325                ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S));
1326
1327        /* Re-enable calibration -if we don't we'll commit
1328         * the same values again and again */
1329        AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1330                        AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1331        AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1332
1333done:
1334
1335        /* TODO: Separate noise floor calibration from I/Q calibration
1336         * since noise floor calibration interrupts rx path while I/Q
1337         * calibration doesn't. We don't need to run noise floor calibration
1338         * as often as I/Q calibration.*/
1339        ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1340
1341        /* Initiate a gain_F calibration */
1342        ath5k_hw_request_rfgain_probe(ah);
1343
1344        return 0;
1345}
1346
1347/*
1348 * Perform a PHY calibration
1349 */
1350int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1351                struct net80211_channel *channel)
1352{
1353        int ret;
1354
1355        if (ah->ah_radio == AR5K_RF5110)
1356                ret = ath5k_hw_rf5110_calibrate(ah, channel);
1357        else
1358                ret = ath5k_hw_rf511x_calibrate(ah, channel);
1359
1360        return ret;
1361}
1362
1363int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1364{
1365        ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1366
1367        return 0;
1368}
1369
1370/********************\
1371  Misc PHY functions
1372\********************/
1373
1374/*
1375 * Get the PHY Chip revision
1376 */
1377u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1378{
1379        unsigned int i;
1380        u32 srev;
1381        u16 ret;
1382
1383        /*
1384         * Set the radio chip access register
1385         */
1386        switch (chan) {
1387        case CHANNEL_2GHZ:
1388                ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1389                break;
1390        case CHANNEL_5GHZ:
1391                ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1392                break;
1393        default:
1394                return 0;
1395        }
1396
1397        mdelay(2);
1398
1399        /* ...wait until PHY is ready and read the selected radio revision */
1400        ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1401
1402        for (i = 0; i < 8; i++)
1403                ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1404
1405        if (ah->ah_version == AR5K_AR5210) {
1406                srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1407                ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1408        } else {
1409                srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1410                ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1411                                ((srev & 0x0f) << 4), 8);
1412        }
1413
1414        /* Reset to the 5GHz mode */
1415        ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1416
1417        return ret;
1418}
1419
1420void /*TODO:Boundary check*/
1421ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant)
1422{
1423        if (ah->ah_version != AR5K_AR5210)
1424                ath5k_hw_reg_write(ah, ant, AR5K_DEFAULT_ANTENNA);
1425}
1426
1427unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1428{
1429        if (ah->ah_version != AR5K_AR5210)
1430                return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
1431
1432        return 0; /*XXX: What do we return for 5210 ?*/
1433}
1434
1435
1436/****************\
1437* TX power setup *
1438\****************/
1439
1440/*
1441 * Helper functions
1442 */
1443
1444/*
1445 * Do linear interpolation between two given (x, y) points
1446 */
1447static s16
1448ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1449                                        s16 y_left, s16 y_right)
1450{
1451        s16 ratio, result;
1452
1453        /* Avoid divide by zero and skip interpolation
1454         * if we have the same point */
1455        if ((x_left == x_right) || (y_left == y_right))
1456                return y_left;
1457
1458        /*
1459         * Since we use ints and not fps, we need to scale up in
1460         * order to get a sane ratio value (or else we 'll eg. get
1461         * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1462         * to have some accuracy both for 0.5 and 0.25 steps.
1463         */
1464        ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1465
1466        /* Now scale down to be in range */
1467        result = y_left + (ratio * (target - x_left) / 100);
1468
1469        return result;
1470}
1471
1472/*
1473 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1474 *
1475 * Since we have the top of the curve and we draw the line below
1476 * until we reach 1 (1 pcdac step) we need to know which point
1477 * (x value) that is so that we don't go below y axis and have negative
1478 * pcdac values when creating the curve, or fill the table with zeroes.
1479 */
1480static s16
1481ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1482                                const s16 *pwrL, const s16 *pwrR)
1483{
1484        s8 tmp;
1485        s16 min_pwrL, min_pwrR;
1486        s16 pwr_i;
1487
1488        if (pwrL[0] == pwrL[1])
1489                min_pwrL = pwrL[0];
1490        else {
1491                pwr_i = pwrL[0];
1492                do {
1493                        pwr_i--;
1494                        tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1495                                                        pwrL[0], pwrL[1],
1496                                                        stepL[0], stepL[1]);
1497                } while (tmp > 1);
1498
1499                min_pwrL = pwr_i;
1500        }
1501
1502        if (pwrR[0] == pwrR[1])
1503                min_pwrR = pwrR[0];
1504        else {
1505                pwr_i = pwrR[0];
1506                do {
1507                        pwr_i--;
1508                        tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1509                                                        pwrR[0], pwrR[1],
1510                                                        stepR[0], stepR[1]);
1511                } while (tmp > 1);
1512
1513                min_pwrR = pwr_i;
1514        }
1515
1516        /* Keep the right boundary so that it works for both curves */
1517        return max(min_pwrL, min_pwrR);
1518}
1519
1520/*
1521 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
1522 * Power to PCDAC curve.
1523 *
1524 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
1525 * steps (offsets) on y axis. Power can go up to 31.5dB and max
1526 * PCDAC/PDADC step for each curve is 64 but we can write more than
1527 * one curves on hw so we can go up to 128 (which is the max step we
1528 * can write on the final table).
1529 *
1530 * We write y values (PCDAC/PDADC steps) on hw.
1531 */
1532static void
1533ath5k_create_power_curve(s16 pmin, s16 pmax,
1534                        const s16 *pwr, const u8 *vpd,
1535                        u8 num_points,
1536                        u8 *vpd_table, u8 type)
1537{
1538        u8 idx[2] = { 0, 1 };
1539        s16 pwr_i = 2*pmin;
1540        int i;
1541
1542        if (num_points < 2)
1543                return;
1544
1545        /* We want the whole line, so adjust boundaries
1546         * to cover the entire power range. Note that
1547         * power values are already 0.25dB so no need
1548         * to multiply pwr_i by 2 */
1549        if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
1550                pwr_i = pmin;
1551                pmin = 0;
1552                pmax = 63;
1553        }
1554
1555        /* Find surrounding turning points (TPs)
1556         * and interpolate between them */
1557        for (i = 0; (i <= (u16) (pmax - pmin)) &&
1558        (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
1559
1560                /* We passed the right TP, move to the next set of TPs
1561                 * if we pass the last TP, extrapolate above using the last
1562                 * two TPs for ratio */
1563                if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
1564                        idx[0]++;
1565                        idx[1]++;
1566                }
1567
1568                vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
1569                                                pwr[idx[0]], pwr[idx[1]],
1570                                                vpd[idx[0]], vpd[idx[1]]);
1571
1572                /* Increase by 0.5dB
1573                 * (0.25 dB units) */
1574                pwr_i += 2;
1575        }
1576}
1577
1578/*
1579 * Get the surrounding per-channel power calibration piers
1580 * for a given frequency so that we can interpolate between
1581 * them and come up with an apropriate dataset for our current
1582 * channel.
1583 */
1584static void
1585ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
1586                        struct net80211_channel *channel,
1587                        struct ath5k_chan_pcal_info **pcinfo_l,
1588                        struct ath5k_chan_pcal_info **pcinfo_r)
1589{
1590        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1591        struct ath5k_chan_pcal_info *pcinfo;
1592        u8 idx_l, idx_r;
1593        u8 mode, max, i;
1594        u32 target = channel->center_freq;
1595
1596        idx_l = 0;
1597        idx_r = 0;
1598
1599        if (!(channel->hw_value & CHANNEL_OFDM)) {
1600                pcinfo = ee->ee_pwr_cal_b;
1601                mode = AR5K_EEPROM_MODE_11B;
1602        } else if (channel->hw_value & CHANNEL_2GHZ) {
1603                pcinfo = ee->ee_pwr_cal_g;
1604                mode = AR5K_EEPROM_MODE_11G;
1605        } else {
1606                pcinfo = ee->ee_pwr_cal_a;
1607                mode = AR5K_EEPROM_MODE_11A;
1608        }
1609        max = ee->ee_n_piers[mode] - 1;
1610
1611        /* Frequency is below our calibrated
1612         * range. Use the lowest power curve
1613         * we have */
1614        if (target < pcinfo[0].freq) {
1615                idx_l = idx_r = 0;
1616                goto done;
1617        }
1618
1619        /* Frequency is above our calibrated
1620         * range. Use the highest power curve
1621         * we have */
1622        if (target > pcinfo[max].freq) {
1623                idx_l = idx_r = max;
1624                goto done;
1625        }
1626
1627        /* Frequency is inside our calibrated
1628         * channel range. Pick the surrounding
1629         * calibration piers so that we can
1630         * interpolate */
1631        for (i = 0; i <= max; i++) {
1632
1633                /* Frequency matches one of our calibration
1634                 * piers, no need to interpolate, just use
1635                 * that calibration pier */
1636                if (pcinfo[i].freq == target) {
1637                        idx_l = idx_r = i;
1638                        goto done;
1639                }
1640
1641                /* We found a calibration pier that's above
1642                 * frequency, use this pier and the previous
1643                 * one to interpolate */
1644                if (target < pcinfo[i].freq) {
1645                        idx_r = i;
1646                        idx_l = idx_r - 1;
1647                        goto done;
1648                }
1649        }
1650
1651done:
1652        *pcinfo_l = &pcinfo[idx_l];
1653        *pcinfo_r = &pcinfo[idx_r];
1654
1655        return;
1656}
1657
1658/*
1659 * Get the surrounding per-rate power calibration data
1660 * for a given frequency and interpolate between power
1661 * values to set max target power supported by hw for
1662 * each rate.
1663 */
1664static void
1665ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
1666                        struct net80211_channel *channel,
1667                        struct ath5k_rate_pcal_info *rates)
1668{
1669        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1670        struct ath5k_rate_pcal_info *rpinfo;
1671        u8 idx_l, idx_r;
1672        u8 mode, max, i;
1673        u32 target = channel->center_freq;
1674
1675        idx_l = 0;
1676        idx_r = 0;
1677
1678        if (!(channel->hw_value & CHANNEL_OFDM)) {
1679                rpinfo = ee->ee_rate_tpwr_b;
1680                mode = AR5K_EEPROM_MODE_11B;
1681        } else if (channel->hw_value & CHANNEL_2GHZ) {
1682                rpinfo = ee->ee_rate_tpwr_g;
1683                mode = AR5K_EEPROM_MODE_11G;
1684        } else {
1685                rpinfo = ee->ee_rate_tpwr_a;
1686                mode = AR5K_EEPROM_MODE_11A;
1687        }
1688        max = ee->ee_rate_target_pwr_num[mode] - 1;
1689
1690        /* Get the surrounding calibration
1691         * piers - same as above */
1692        if (target < rpinfo[0].freq) {
1693                idx_l = idx_r = 0;
1694                goto done;
1695        }
1696
1697        if (target > rpinfo[max].freq) {
1698                idx_l = idx_r = max;
1699                goto done;
1700        }
1701
1702        for (i = 0; i <= max; i++) {
1703
1704                if (rpinfo[i].freq == target) {
1705                        idx_l = idx_r = i;
1706                        goto done;
1707                }
1708
1709                if (target < rpinfo[i].freq) {
1710                        idx_r = i;
1711                        idx_l = idx_r - 1;
1712                        goto done;
1713                }
1714        }
1715
1716done:
1717        /* Now interpolate power value, based on the frequency */
1718        rates->freq = target;
1719
1720        rates->target_power_6to24 =
1721                ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1722                                        rpinfo[idx_r].freq,
1723                                        rpinfo[idx_l].target_power_6to24,
1724                                        rpinfo[idx_r].target_power_6to24);
1725
1726        rates->target_power_36 =
1727                ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1728                                        rpinfo[idx_r].freq,
1729                                        rpinfo[idx_l].target_power_36,
1730                                        rpinfo[idx_r].target_power_36);
1731
1732        rates->target_power_48 =
1733                ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1734                                        rpinfo[idx_r].freq,
1735                                        rpinfo[idx_l].target_power_48,
1736                                        rpinfo[idx_r].target_power_48);
1737
1738        rates->target_power_54 =
1739                ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1740                                        rpinfo[idx_r].freq,
1741                                        rpinfo[idx_l].target_power_54,
1742                                        rpinfo[idx_r].target_power_54);
1743}
1744
1745/*
1746 * Get the max edge power for this channel if
1747 * we have such data from EEPROM's Conformance Test
1748 * Limits (CTL), and limit max power if needed.
1749 *
1750 * FIXME: Only works for world regulatory domains
1751 */
1752static void
1753ath5k_get_max_ctl_power(struct ath5k_hw *ah,
1754                        struct net80211_channel *channel)
1755{
1756        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1757        struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
1758        u8 *ctl_val = ee->ee_ctl;
1759        s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
1760        s16 edge_pwr = 0;
1761        u8 rep_idx;
1762        u8 i, ctl_mode;
1763        u8 ctl_idx = 0xFF;
1764        u32 target = channel->center_freq;
1765
1766        /* Find out a CTL for our mode that's not mapped
1767         * on a specific reg domain.
1768         *
1769         * TODO: Map our current reg domain to one of the 3 available
1770         * reg domain ids so that we can support more CTLs. */
1771        switch (channel->hw_value & CHANNEL_MODES) {
1772        case CHANNEL_A:
1773                ctl_mode = AR5K_CTL_11A | AR5K_CTL_NO_REGDOMAIN;
1774                break;
1775        case CHANNEL_G:
1776                ctl_mode = AR5K_CTL_11G | AR5K_CTL_NO_REGDOMAIN;
1777                break;
1778        case CHANNEL_B:
1779                ctl_mode = AR5K_CTL_11B | AR5K_CTL_NO_REGDOMAIN;
1780                break;
1781        case CHANNEL_T:
1782                ctl_mode = AR5K_CTL_TURBO | AR5K_CTL_NO_REGDOMAIN;
1783                break;
1784        case CHANNEL_TG:
1785                ctl_mode = AR5K_CTL_TURBOG | AR5K_CTL_NO_REGDOMAIN;
1786                break;
1787        case CHANNEL_XR:
1788                /* Fall through */
1789        default:
1790                return;
1791        }
1792
1793        for (i = 0; i < ee->ee_ctls; i++) {
1794                if (ctl_val[i] == ctl_mode) {
1795                        ctl_idx = i;
1796                        break;
1797                }
1798        }
1799
1800        /* If we have a CTL dataset available grab it and find the
1801         * edge power for our frequency */
1802        if (ctl_idx == 0xFF)
1803                return;
1804
1805        /* Edge powers are sorted by frequency from lower
1806         * to higher. Each CTL corresponds to 8 edge power
1807         * measurements. */
1808        rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
1809
1810        /* Don't do boundaries check because we
1811         * might have more that one bands defined
1812         * for this mode */
1813
1814        /* Get the edge power that's closer to our
1815         * frequency */
1816        for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
1817                rep_idx += i;
1818                if (target <= rep[rep_idx].freq)
1819                        edge_pwr = (s16) rep[rep_idx].edge;
1820        }
1821
1822        if (edge_pwr) {
1823                ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
1824        }
1825}
1826
1827
1828/*
1829 * Power to PCDAC table functions
1830 */
1831
1832/*
1833 * Fill Power to PCDAC table on RF5111
1834 *
1835 * No further processing is needed for RF5111, the only thing we have to
1836 * do is fill the values below and above calibration range since eeprom data
1837 * may not cover the entire PCDAC table.
1838 */
1839static void
1840ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
1841                                                        s16 *table_max)
1842{
1843        u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
1844        u8      *pcdac_tmp = ah->ah_txpower.tmpL[0];
1845        u8      pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
1846        s16     min_pwr, max_pwr;
1847
1848        /* Get table boundaries */
1849        min_pwr = table_min[0];
1850        pcdac_0 = pcdac_tmp[0];
1851
1852        max_pwr = table_max[0];
1853        pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
1854
1855        /* Extrapolate below minimum using pcdac_0 */
1856        pcdac_i = 0;
1857        for (i = 0; i < min_pwr; i++)
1858                pcdac_out[pcdac_i++] = pcdac_0;
1859
1860        /* Copy values from pcdac_tmp */
1861        pwr_idx = min_pwr;
1862        for (i = 0 ; pwr_idx <= max_pwr &&
1863        pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
1864                pcdac_out[pcdac_i++] = pcdac_tmp[i];
1865                pwr_idx++;
1866        }
1867
1868        /* Extrapolate above maximum */
1869        while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
1870                pcdac_out[pcdac_i++] = pcdac_n;
1871
1872}
1873
1874/*
1875 * Combine available XPD Curves and fill Linear Power to PCDAC table
1876 * on RF5112
1877 *
1878 * RFX112 can have up to 2 curves (one for low txpower range and one for
1879 * higher txpower range). We need to put them both on pcdac_out and place
1880 * them in the correct location. In case we only have one curve available
1881 * just fit it on pcdac_out (it's supposed to cover the entire range of
1882 * available pwr levels since it's always the higher power curve). Extrapolate
1883 * below and above final table if needed.
1884 */
1885static void
1886ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
1887                                                s16 *table_max, u8 pdcurves)
1888{
1889        u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
1890        u8      *pcdac_low_pwr;
1891        u8      *pcdac_high_pwr;
1892        u8      *pcdac_tmp;
1893        u8      pwr;
1894        s16     max_pwr_idx;
1895        s16     min_pwr_idx;
1896        s16     mid_pwr_idx = 0;
1897        /* Edge flag turs on the 7nth bit on the PCDAC
1898         * to delcare the higher power curve (force values
1899         * to be greater than 64). If we only have one curve
1900         * we don't need to set this, if we have 2 curves and
1901         * fill the table backwards this can also be used to
1902         * switch from higher power curve to lower power curve */
1903        u8      edge_flag;
1904        int     i;
1905
1906        /* When we have only one curve available
1907         * that's the higher power curve. If we have
1908         * two curves the first is the high power curve
1909         * and the next is the low power curve. */
1910        if (pdcurves > 1) {
1911                pcdac_low_pwr = ah->ah_txpower.tmpL[1];
1912                pcdac_high_pwr = ah->ah_txpower.tmpL[0];
1913                mid_pwr_idx = table_max[1] - table_min[1] - 1;
1914                max_pwr_idx = (table_max[0] - table_min[0]) / 2;
1915
1916                /* If table size goes beyond 31.5dB, keep the
1917                 * upper 31.5dB range when setting tx power.
1918                 * Note: 126 = 31.5 dB in quarter dB steps */
1919                if (table_max[0] - table_min[1] > 126)
1920                        min_pwr_idx = table_max[0] - 126;
1921                else
1922                        min_pwr_idx = table_min[1];
1923
1924                /* Since we fill table backwards
1925                 * start from high power curve */
1926                pcdac_tmp = pcdac_high_pwr;
1927
1928                edge_flag = 0x40;
1929        } else {
1930                pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
1931                pcdac_high_pwr = ah->ah_txpower.tmpL[0];
1932                min_pwr_idx = table_min[0];
1933                max_pwr_idx = (table_max[0] - table_min[0]) / 2;
1934                pcdac_tmp = pcdac_high_pwr;
1935                edge_flag = 0;
1936        }
1937
1938        /* This is used when setting tx power*/
1939        ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
1940
1941        /* Fill Power to PCDAC table backwards */
1942        pwr = max_pwr_idx;
1943        for (i = 63; i >= 0; i--) {
1944                /* Entering lower power range, reset
1945                 * edge flag and set pcdac_tmp to lower
1946                 * power curve.*/
1947                if (edge_flag == 0x40 &&
1948                (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
1949                        edge_flag = 0x00;
1950                        pcdac_tmp = pcdac_low_pwr;
1951                        pwr = mid_pwr_idx/2;
1952                }
1953
1954                /* Don't go below 1, extrapolate below if we have
1955                 * already swithced to the lower power curve -or
1956                 * we only have one curve and edge_flag is zero
1957                 * anyway */
1958                if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
1959                        while (i >= 0) {
1960                                pcdac_out[i] = pcdac_out[i + 1];
1961                                i--;
1962                        }
1963                        break;
1964                }
1965
1966                pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
1967
1968                /* Extrapolate above if pcdac is greater than
1969                 * 126 -this can happen because we OR pcdac_out
1970                 * value with edge_flag on high power curve */
1971                if (pcdac_out[i] > 126)
1972                        pcdac_out[i] = 126;
1973
1974                /* Decrease by a 0.5dB step */
1975                pwr--;
1976        }
1977}
1978
1979/* Write PCDAC values on hw */
1980static void
1981ath5k_setup_pcdac_table(struct ath5k_hw *ah)
1982{
1983        u8      *pcdac_out = ah->ah_txpower.txp_pd_table;
1984        int     i;
1985
1986        /*
1987         * Write TX power values
1988         */
1989        for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
1990                ath5k_hw_reg_write(ah,
1991                        (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
1992                        (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
1993                        AR5K_PHY_PCDAC_TXPOWER(i));
1994        }
1995}
1996
1997
1998/*
1999 * Power to PDADC table functions
2000 */
2001
2002/*
2003 * Set the gain boundaries and create final Power to PDADC table
2004 *
2005 * We can have up to 4 pd curves, we need to do a simmilar process
2006 * as we do for RF5112. This time we don't have an edge_flag but we
2007 * set the gain boundaries on a separate register.
2008 */
2009static void
2010ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2011                        s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2012{
2013        u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2014        u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2015        u8 *pdadc_tmp;
2016        s16 pdadc_0;
2017        u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2018        u8 pd_gain_overlap;
2019
2020        /* Note: Register value is initialized on initvals
2021         * there is no feedback from hw.
2022         * XXX: What about pd_gain_overlap from EEPROM ? */
2023        pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2024                AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2025
2026        /* Create final PDADC table */
2027        for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2028                pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2029
2030                if (pdg == pdcurves - 1)
2031                        /* 2 dB boundary stretch for last
2032                         * (higher power) curve */
2033                        gain_boundaries[pdg] = pwr_max[pdg] + 4;
2034                else
2035                        /* Set gain boundary in the middle
2036                         * between this curve and the next one */
2037                        gain_boundaries[pdg] =
2038                                (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2039
2040                /* Sanity check in case our 2 db stretch got out of
2041                 * range. */
2042                if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2043                        gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2044
2045                /* For the first curve (lower power)
2046                 * start from 0 dB */
2047                if (pdg == 0)
2048                        pdadc_0 = 0;
2049                else
2050                        /* For the other curves use the gain overlap */
2051                        pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2052                                                        pd_gain_overlap;
2053
2054                /* Force each power step to be at least 0.5 dB */
2055                if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2056                        pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2057                else
2058                        pwr_step = 1;
2059
2060                /* If pdadc_0 is negative, we need to extrapolate
2061                 * below this pdgain by a number of pwr_steps */
2062                while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2063                        s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2064                        pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2065                        pdadc_0++;
2066                }
2067
2068                /* Set last pwr level, using gain boundaries */
2069                pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2070                /* Limit it to be inside pwr range */
2071                table_size = pwr_max[pdg] - pwr_min[pdg];
2072                max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2073
2074                /* Fill pdadc_out table */
2075                while (pdadc_0 < max_idx)
2076                        pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2077
2078                /* Need to extrapolate above this pdgain? */
2079                if (pdadc_n <= max_idx)
2080                        continue;
2081
2082                /* Force each power step to be at least 0.5 dB */
2083                if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2084                        pwr_step = pdadc_tmp[table_size - 1] -
2085                                                pdadc_tmp[table_size - 2];
2086                else
2087                        pwr_step = 1;
2088
2089                /* Extrapolate above */
2090                while ((pdadc_0 < (s16) pdadc_n) &&
2091                (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2092                        s16 tmp = pdadc_tmp[table_size - 1] +
2093                                        (pdadc_0 - max_idx) * pwr_step;
2094                        pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2095                        pdadc_0++;
2096                }
2097        }
2098
2099        while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2100                gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2101                pdg++;
2102        }
2103
2104        while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2105                pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2106                pdadc_i++;
2107        }
2108
2109        /* Set gain boundaries */
2110        ath5k_hw_reg_write(ah,
2111                AR5K_REG_SM(pd_gain_overlap,
2112                        AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2113                AR5K_REG_SM(gain_boundaries[0],
2114                        AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2115                AR5K_REG_SM(gain_boundaries[1],
2116                        AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2117                AR5K_REG_SM(gain_boundaries[2],
2118                        AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2119                AR5K_REG_SM(gain_boundaries[3],
2120                        AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2121                AR5K_PHY_TPC_RG5);
2122
2123        /* Used for setting rate power table */
2124        ah->ah_txpower.txp_min_idx = pwr_min[0];
2125
2126}
2127
2128/* Write PDADC values on hw */
2129static void
2130ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2131                        u8 pdcurves, u8 *pdg_to_idx)
2132{
2133        u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2134        u32 reg;
2135        u8 i;
2136
2137        /* Select the right pdgain curves */
2138
2139        /* Clear current settings */
2140        reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2141        reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2142                AR5K_PHY_TPC_RG1_PDGAIN_2 |
2143                AR5K_PHY_TPC_RG1_PDGAIN_3 |
2144                AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2145
2146        /*
2147         * Use pd_gains curve from eeprom
2148         *
2149         * This overrides the default setting from initvals
2150         * in case some vendors (e.g. Zcomax) don't use the default
2151         * curves. If we don't honor their settings we 'll get a
2152         * 5dB (1 * gain overlap ?) drop.
2153         */
2154        reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2155
2156        switch (pdcurves) {
2157        case 3:
2158                reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2159                /* Fall through */
2160        case 2:
2161                reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2162                /* Fall through */
2163        case 1:
2164                reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2165                break;
2166        }
2167        ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2168
2169        /*
2170         * Write TX power values
2171         */
2172        for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2173                ath5k_hw_reg_write(ah,
2174                        ((pdadc_out[4*i + 0] & 0xff) << 0) |
2175                        ((pdadc_out[4*i + 1] & 0xff) << 8) |
2176                        ((pdadc_out[4*i + 2] & 0xff) << 16) |
2177                        ((pdadc_out[4*i + 3] & 0xff) << 24),
2178                        AR5K_PHY_PDADC_TXPOWER(i));
2179        }
2180}
2181
2182
2183/*
2184 * Common code for PCDAC/PDADC tables
2185 */
2186
2187/*
2188 * This is the main function that uses all of the above
2189 * to set PCDAC/PDADC table on hw for the current channel.
2190 * This table is used for tx power calibration on the basband,
2191 * without it we get weird tx power levels and in some cases
2192 * distorted spectral mask
2193 */
2194static int
2195ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2196                        struct net80211_channel *channel,
2197                        u8 ee_mode, u8 type)
2198{
2199        struct ath5k_pdgain_info *pdg_L, *pdg_R;
2200        struct ath5k_chan_pcal_info *pcinfo_L;
2201        struct ath5k_chan_pcal_info *pcinfo_R;
2202        struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2203        u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2204        s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2205        s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2206        u8 *tmpL;
2207        u8 *tmpR;
2208        u32 target = channel->center_freq;
2209        int pdg, i;
2210
2211        /* Get surounding freq piers for this channel */
2212        ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2213                                                &pcinfo_L,
2214                                                &pcinfo_R);
2215
2216        /* Loop over pd gain curves on
2217         * surounding freq piers by index */
2218        for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2219
2220                /* Fill curves in reverse order
2221                 * from lower power (max gain)
2222                 * to higher power. Use curve -> idx
2223                 * backmaping we did on eeprom init */
2224                u8 idx = pdg_curve_to_idx[pdg];
2225
2226                /* Grab the needed curves by index */
2227                pdg_L = &pcinfo_L->pd_curves[idx];
2228                pdg_R = &pcinfo_R->pd_curves[idx];
2229
2230                /* Initialize the temp tables */
2231                tmpL = ah->ah_txpower.tmpL[pdg];
2232                tmpR = ah->ah_txpower.tmpR[pdg];
2233
2234                /* Set curve's x boundaries and create
2235                 * curves so that they cover the same
2236                 * range (if we don't do that one table
2237                 * will have values on some range and the
2238                 * other one won't have any so interpolation
2239                 * will fail) */
2240                table_min[pdg] = min(pdg_L->pd_pwr[0],
2241                                        pdg_R->pd_pwr[0]) / 2;
2242
2243                table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2244                                pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2245
2246                /* Now create the curves on surrounding channels
2247                 * and interpolate if needed to get the final
2248                 * curve for this gain on this channel */
2249                switch (type) {
2250                case AR5K_PWRTABLE_LINEAR_PCDAC:
2251                        /* Override min/max so that we don't loose
2252                         * accuracy (don't divide by 2) */
2253                        table_min[pdg] = min(pdg_L->pd_pwr[0],
2254                                                pdg_R->pd_pwr[0]);
2255
2256                        table_max[pdg] =
2257                                max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2258                                        pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2259
2260                        /* Override minimum so that we don't get
2261                         * out of bounds while extrapolating
2262                         * below. Don't do this when we have 2
2263                         * curves and we are on the high power curve
2264                         * because table_min is ok in this case */
2265                        if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2266
2267                                table_min[pdg] =
2268                                        ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2269                                                                pdg_R->pd_step,
2270                                                                pdg_L->pd_pwr,
2271                                                                pdg_R->pd_pwr);
2272
2273                                /* Don't go too low because we will
2274                                 * miss the upper part of the curve.
2275                                 * Note: 126 = 31.5dB (max power supported)
2276                                 * in 0.25dB units */
2277                                if (table_max[pdg] - table_min[pdg] > 126)
2278                                        table_min[pdg] = table_max[pdg] - 126;
2279                        }
2280
2281                        /* Fall through */
2282                case AR5K_PWRTABLE_PWR_TO_PCDAC:
2283                case AR5K_PWRTABLE_PWR_TO_PDADC:
2284
2285                        ath5k_create_power_curve(table_min[pdg],
2286                                                table_max[pdg],
2287                                                pdg_L->pd_pwr,
2288                                                pdg_L->pd_step,
2289                                                pdg_L->pd_points, tmpL, type);
2290
2291                        /* We are in a calibration
2292                         * pier, no need to interpolate
2293                         * between freq piers */
2294                        if (pcinfo_L == pcinfo_R)
2295                                continue;
2296
2297                        ath5k_create_power_curve(table_min[pdg],
2298                                                table_max[pdg],
2299                                                pdg_R->pd_pwr,
2300                                                pdg_R->pd_step,
2301                                                pdg_R->pd_points, tmpR, type);
2302                        break;
2303                default:
2304                        return -EINVAL;
2305                }
2306
2307                /* Interpolate between curves
2308                 * of surounding freq piers to
2309                 * get the final curve for this
2310                 * pd gain. Re-use tmpL for interpolation
2311                 * output */
2312                for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2313                (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2314                        tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2315                                                        (s16) pcinfo_L->freq,
2316                                                        (s16) pcinfo_R->freq,
2317                                                        (s16) tmpL[i],
2318                                                        (s16) tmpR[i]);
2319                }
2320        }
2321
2322        /* Now we have a set of curves for this
2323         * channel on tmpL (x range is table_max - table_min
2324         * and y values are tmpL[pdg][]) sorted in the same
2325         * order as EEPROM (because we've used the backmaping).
2326         * So for RF5112 it's from higher power to lower power
2327         * and for RF2413 it's from lower power to higher power.
2328         * For RF5111 we only have one curve. */
2329
2330        /* Fill min and max power levels for this
2331         * channel by interpolating the values on
2332         * surounding channels to complete the dataset */
2333        ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2334                                        (s16) pcinfo_L->freq,
2335                                        (s16) pcinfo_R->freq,
2336                                        pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2337
2338        ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2339                                        (s16) pcinfo_L->freq,
2340                                        (s16) pcinfo_R->freq,
2341                                        pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2342
2343        /* We are ready to go, fill PCDAC/PDADC
2344         * table and write settings on hardware */
2345        switch (type) {
2346        case AR5K_PWRTABLE_LINEAR_PCDAC:
2347                /* For RF5112 we can have one or two curves
2348                 * and each curve covers a certain power lvl
2349                 * range so we need to do some more processing */
2350                ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2351                                                ee->ee_pd_gains[ee_mode]);
2352
2353                /* Set txp.offset so that we can
2354                 * match max power value with max
2355                 * table index */
2356                ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2357
2358                /* Write settings on hw */
2359                ath5k_setup_pcdac_table(ah);
2360                break;
2361        case AR5K_PWRTABLE_PWR_TO_PCDAC:
2362                /* We are done for RF5111 since it has only
2363                 * one curve, just fit the curve on the table */
2364                ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2365
2366                /* No rate powertable adjustment for RF5111 */
2367                ah->ah_txpower.txp_min_idx = 0;
2368                ah->ah_txpower.txp_offset = 0;
2369
2370                /* Write settings on hw */
2371                ath5k_setup_pcdac_table(ah);
2372                break;
2373        case AR5K_PWRTABLE_PWR_TO_PDADC:
2374                /* Set PDADC boundaries and fill
2375                 * final PDADC table */
2376                ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2377                                                ee->ee_pd_gains[ee_mode]);
2378
2379                /* Write settings on hw */
2380                ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2381
2382                /* Set txp.offset, note that table_min
2383                 * can be negative */
2384                ah->ah_txpower.txp_offset = table_min[0];
2385                break;
2386        default:
2387                return -EINVAL;
2388        }
2389
2390        return 0;
2391}
2392
2393
2394/*
2395 * Per-rate tx power setting
2396 *
2397 * This is the code that sets the desired tx power (below
2398 * maximum) on hw for each rate (we also have TPC that sets
2399 * power per packet). We do that by providing an index on the
2400 * PCDAC/PDADC table we set up.
2401 */
2402
2403/*
2404 * Set rate power table
2405 *
2406 * For now we only limit txpower based on maximum tx power
2407 * supported by hw (what's inside rate_info). We need to limit
2408 * this even more, based on regulatory domain etc.
2409 *
2410 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2411 * and is indexed as follows:
2412 * rates[0] - rates[7] -> OFDM rates
2413 * rates[8] - rates[14] -> CCK rates
2414 * rates[15] -> XR rates (they all have the same power)
2415 */
2416static void
2417ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2418                        struct ath5k_rate_pcal_info *rate_info,
2419                        u8 ee_mode)
2420{
2421        unsigned int i;
2422        u16 *rates;
2423
2424        /* max_pwr is power level we got from driver/user in 0.5dB
2425         * units, switch to 0.25dB units so we can compare */
2426        max_pwr *= 2;
2427        max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2428
2429        /* apply rate limits */
2430        rates = ah->ah_txpower.txp_rates_power_table;
2431
2432        /* OFDM rates 6 to 24Mb/s */
2433        for (i = 0; i < 5; i++)
2434                rates[i] = min(max_pwr, rate_info->target_power_6to24);
2435
2436        /* Rest OFDM rates */
2437        rates[5] = min(rates[0], rate_info->target_power_36);
2438        rates[6] = min(rates[0], rate_info->target_power_48);
2439        rates[7] = min(rates[0], rate_info->target_power_54);
2440
2441        /* CCK rates */
2442        /* 1L */
2443        rates[8] = min(rates[0], rate_info->target_power_6to24);
2444        /* 2L */
2445        rates[9] = min(rates[0], rate_info->target_power_36);
2446        /* 2S */
2447        rates[10] = min(rates[0], rate_info->target_power_36);
2448        /* 5L */
2449        rates[11] = min(rates[0], rate_info->target_power_48);
2450        /* 5S */
2451        rates[12] = min(rates[0], rate_info->target_power_48);
2452        /* 11L */
2453        rates[13] = min(rates[0], rate_info->target_power_54);
2454        /* 11S */
2455        rates[14] = min(rates[0], rate_info->target_power_54);
2456
2457        /* XR rates */
2458        rates[15] = min(rates[0], rate_info->target_power_6to24);
2459
2460        /* CCK rates have different peak to average ratio
2461         * so we have to tweak their power so that gainf
2462         * correction works ok. For this we use OFDM to
2463         * CCK delta from eeprom */
2464        if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2465        (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2466                for (i = 8; i <= 15; i++)
2467                        rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2468
2469        ah->ah_txpower.txp_min_pwr = rates[7];
2470        ah->ah_txpower.txp_max_pwr = rates[0];
2471        ah->ah_txpower.txp_ofdm = rates[7];
2472}
2473
2474
2475/*
2476 * Set transmition power
2477 */
2478int
2479ath5k_hw_txpower(struct ath5k_hw *ah, struct net80211_channel *channel,
2480                u8 ee_mode, u8 txpower)
2481{
2482        struct ath5k_rate_pcal_info rate_info;
2483        u8 type;
2484        int ret;
2485
2486        if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2487                DBG("ath5k: invalid tx power %d\n", txpower);
2488                return -EINVAL;
2489        }
2490        if (txpower == 0)
2491                txpower = AR5K_TUNE_DEFAULT_TXPOWER;
2492
2493        /* Reset TX power values */
2494        memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2495        ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2496        ah->ah_txpower.txp_min_pwr = 0;
2497        ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2498
2499        /* Initialize TX power table */
2500        switch (ah->ah_radio) {
2501        case AR5K_RF5111:
2502                type = AR5K_PWRTABLE_PWR_TO_PCDAC;
2503                break;
2504        case AR5K_RF5112:
2505                type = AR5K_PWRTABLE_LINEAR_PCDAC;
2506                break;
2507        case AR5K_RF2413:
2508        case AR5K_RF5413:
2509        case AR5K_RF2316:
2510        case AR5K_RF2317:
2511        case AR5K_RF2425:
2512                type = AR5K_PWRTABLE_PWR_TO_PDADC;
2513                break;
2514        default:
2515                return -EINVAL;
2516        }
2517
2518        /* FIXME: Only on channel/mode change */
2519        ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
2520        if (ret)
2521                return ret;
2522
2523        /* Limit max power if we have a CTL available */
2524        ath5k_get_max_ctl_power(ah, channel);
2525
2526        /* FIXME: Tx power limit for this regdomain
2527         * XXX: Mac80211/CRDA will do that anyway ? */
2528
2529        /* FIXME: Antenna reduction stuff */
2530
2531        /* FIXME: Limit power on turbo modes */
2532
2533        /* FIXME: TPC scale reduction */
2534
2535        /* Get surounding channels for per-rate power table
2536         * calibration */
2537        ath5k_get_rate_pcal_data(ah, channel, &rate_info);
2538
2539        /* Setup rate power table */
2540        ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
2541
2542        /* Write rate power table on hw */
2543        ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
2544                AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
2545                AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
2546
2547        ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
2548                AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
2549                AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
2550
2551        ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
2552                AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
2553                AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
2554
2555        ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
2556                AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
2557                AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
2558
2559        /* FIXME: TPC support */
2560        if (ah->ah_txpower.txp_tpc) {
2561                ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
2562                        AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
2563
2564                ath5k_hw_reg_write(ah,
2565                        AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
2566                        AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
2567                        AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
2568                        AR5K_TPC);
2569        } else {
2570                ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
2571                        AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
2572        }
2573
2574        return 0;
2575}
2576
2577int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower)
2578{
2579        struct net80211_channel *channel = ah->ah_current_channel;
2580
2581        DBG2("ath5k: changing txpower to %d\n", txpower);
2582
2583        return ath5k_hw_txpower(ah, channel, mode, txpower);
2584}
2585
2586#undef _ATH5K_PHY
Note: See TracBrowser for help on using the repository browser.