1 | /* |
---|
2 | * PHY functions |
---|
3 | * |
---|
4 | * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org> |
---|
5 | * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> |
---|
6 | * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> |
---|
7 | * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> |
---|
8 | * |
---|
9 | * Lightly modified for gPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>. |
---|
10 | * |
---|
11 | * Permission to use, copy, modify, and distribute this software for any |
---|
12 | * purpose with or without fee is hereby granted, provided that the above |
---|
13 | * copyright notice and this permission notice appear in all copies. |
---|
14 | * |
---|
15 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
---|
16 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
---|
17 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
---|
18 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
---|
19 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
---|
20 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
---|
21 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
---|
22 | * |
---|
23 | */ |
---|
24 | |
---|
25 | FILE_LICENCE ( MIT ); |
---|
26 | |
---|
27 | #define _ATH5K_PHY |
---|
28 | |
---|
29 | #include <unistd.h> |
---|
30 | #include <stdlib.h> |
---|
31 | |
---|
32 | #include "ath5k.h" |
---|
33 | #include "reg.h" |
---|
34 | #include "base.h" |
---|
35 | #include "rfbuffer.h" |
---|
36 | #include "rfgain.h" |
---|
37 | |
---|
38 | static inline int min(int x, int y) |
---|
39 | { |
---|
40 | return (x < y) ? x : y; |
---|
41 | } |
---|
42 | |
---|
43 | static inline int max(int x, int y) |
---|
44 | { |
---|
45 | return (x > y) ? x : y; |
---|
46 | } |
---|
47 | |
---|
48 | /* |
---|
49 | * Used to modify RF Banks before writing them to AR5K_RF_BUFFER |
---|
50 | */ |
---|
51 | static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah, |
---|
52 | const struct ath5k_rf_reg *rf_regs, |
---|
53 | u32 val, u8 reg_id, int set) |
---|
54 | { |
---|
55 | const struct ath5k_rf_reg *rfreg = NULL; |
---|
56 | u8 offset, bank, num_bits, col, position; |
---|
57 | u16 entry; |
---|
58 | u32 mask, data, last_bit, bits_shifted, first_bit; |
---|
59 | u32 *rfb; |
---|
60 | s32 bits_left; |
---|
61 | unsigned i; |
---|
62 | |
---|
63 | data = 0; |
---|
64 | rfb = ah->ah_rf_banks; |
---|
65 | |
---|
66 | for (i = 0; i < ah->ah_rf_regs_count; i++) { |
---|
67 | if (rf_regs[i].index == reg_id) { |
---|
68 | rfreg = &rf_regs[i]; |
---|
69 | break; |
---|
70 | } |
---|
71 | } |
---|
72 | |
---|
73 | if (rfb == NULL || rfreg == NULL) { |
---|
74 | DBG("ath5k: RF register not found!\n"); |
---|
75 | /* should not happen */ |
---|
76 | return 0; |
---|
77 | } |
---|
78 | |
---|
79 | bank = rfreg->bank; |
---|
80 | num_bits = rfreg->field.len; |
---|
81 | first_bit = rfreg->field.pos; |
---|
82 | col = rfreg->field.col; |
---|
83 | |
---|
84 | /* first_bit is an offset from bank's |
---|
85 | * start. Since we have all banks on |
---|
86 | * the same array, we use this offset |
---|
87 | * to mark each bank's start */ |
---|
88 | offset = ah->ah_offset[bank]; |
---|
89 | |
---|
90 | /* Boundary check */ |
---|
91 | if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) { |
---|
92 | DBG("ath5k: RF invalid values at offset %d\n", offset); |
---|
93 | return 0; |
---|
94 | } |
---|
95 | |
---|
96 | entry = ((first_bit - 1) / 8) + offset; |
---|
97 | position = (first_bit - 1) % 8; |
---|
98 | |
---|
99 | if (set) |
---|
100 | data = ath5k_hw_bitswap(val, num_bits); |
---|
101 | |
---|
102 | for (bits_shifted = 0, bits_left = num_bits; bits_left > 0; |
---|
103 | position = 0, entry++) { |
---|
104 | |
---|
105 | last_bit = (position + bits_left > 8) ? 8 : |
---|
106 | position + bits_left; |
---|
107 | |
---|
108 | mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) << |
---|
109 | (col * 8); |
---|
110 | |
---|
111 | if (set) { |
---|
112 | rfb[entry] &= ~mask; |
---|
113 | rfb[entry] |= ((data << position) << (col * 8)) & mask; |
---|
114 | data >>= (8 - position); |
---|
115 | } else { |
---|
116 | data |= (((rfb[entry] & mask) >> (col * 8)) >> position) |
---|
117 | << bits_shifted; |
---|
118 | bits_shifted += last_bit - position; |
---|
119 | } |
---|
120 | |
---|
121 | bits_left -= 8 - position; |
---|
122 | } |
---|
123 | |
---|
124 | data = set ? 1 : ath5k_hw_bitswap(data, num_bits); |
---|
125 | |
---|
126 | return data; |
---|
127 | } |
---|
128 | |
---|
129 | /**********************\ |
---|
130 | * RF Gain optimization * |
---|
131 | \**********************/ |
---|
132 | |
---|
133 | /* |
---|
134 | * This code is used to optimize rf gain on different environments |
---|
135 | * (temprature mostly) based on feedback from a power detector. |
---|
136 | * |
---|
137 | * It's only used on RF5111 and RF5112, later RF chips seem to have |
---|
138 | * auto adjustment on hw -notice they have a much smaller BANK 7 and |
---|
139 | * no gain optimization ladder-. |
---|
140 | * |
---|
141 | * For more infos check out this patent doc |
---|
142 | * http://www.freepatentsonline.com/7400691.html |
---|
143 | * |
---|
144 | * This paper describes power drops as seen on the receiver due to |
---|
145 | * probe packets |
---|
146 | * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues |
---|
147 | * %20of%20Power%20Control.pdf |
---|
148 | * |
---|
149 | * And this is the MadWiFi bug entry related to the above |
---|
150 | * http://madwifi-project.org/ticket/1659 |
---|
151 | * with various measurements and diagrams |
---|
152 | * |
---|
153 | * TODO: Deal with power drops due to probes by setting an apropriate |
---|
154 | * tx power on the probe packets ! Make this part of the calibration process. |
---|
155 | */ |
---|
156 | |
---|
157 | /* Initialize ah_gain durring attach */ |
---|
158 | int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah) |
---|
159 | { |
---|
160 | /* Initialize the gain optimization values */ |
---|
161 | switch (ah->ah_radio) { |
---|
162 | case AR5K_RF5111: |
---|
163 | ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default; |
---|
164 | ah->ah_gain.g_low = 20; |
---|
165 | ah->ah_gain.g_high = 35; |
---|
166 | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; |
---|
167 | break; |
---|
168 | case AR5K_RF5112: |
---|
169 | ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default; |
---|
170 | ah->ah_gain.g_low = 20; |
---|
171 | ah->ah_gain.g_high = 85; |
---|
172 | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; |
---|
173 | break; |
---|
174 | default: |
---|
175 | return -EINVAL; |
---|
176 | } |
---|
177 | |
---|
178 | return 0; |
---|
179 | } |
---|
180 | |
---|
181 | /* Schedule a gain probe check on the next transmited packet. |
---|
182 | * That means our next packet is going to be sent with lower |
---|
183 | * tx power and a Peak to Average Power Detector (PAPD) will try |
---|
184 | * to measure the gain. |
---|
185 | * |
---|
186 | * TODO: Use propper tx power setting for the probe packet so |
---|
187 | * that we don't observe a serious power drop on the receiver |
---|
188 | * |
---|
189 | * XXX: How about forcing a tx packet (bypassing PCU arbitrator etc) |
---|
190 | * just after we enable the probe so that we don't mess with |
---|
191 | * standard traffic ? Maybe it's time to use sw interrupts and |
---|
192 | * a probe tasklet !!! |
---|
193 | */ |
---|
194 | static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah) |
---|
195 | { |
---|
196 | |
---|
197 | /* Skip if gain calibration is inactive or |
---|
198 | * we already handle a probe request */ |
---|
199 | if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) |
---|
200 | return; |
---|
201 | |
---|
202 | /* Send the packet with 2dB below max power as |
---|
203 | * patent doc suggest */ |
---|
204 | ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4, |
---|
205 | AR5K_PHY_PAPD_PROBE_TXPOWER) | |
---|
206 | AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); |
---|
207 | |
---|
208 | ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED; |
---|
209 | |
---|
210 | } |
---|
211 | |
---|
212 | /* Calculate gain_F measurement correction |
---|
213 | * based on the current step for RF5112 rev. 2 */ |
---|
214 | static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah) |
---|
215 | { |
---|
216 | u32 mix, step; |
---|
217 | u32 *rf; |
---|
218 | const struct ath5k_gain_opt *go; |
---|
219 | const struct ath5k_gain_opt_step *g_step; |
---|
220 | const struct ath5k_rf_reg *rf_regs; |
---|
221 | |
---|
222 | /* Only RF5112 Rev. 2 supports it */ |
---|
223 | if ((ah->ah_radio != AR5K_RF5112) || |
---|
224 | (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A)) |
---|
225 | return 0; |
---|
226 | |
---|
227 | go = &rfgain_opt_5112; |
---|
228 | rf_regs = rf_regs_5112a; |
---|
229 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); |
---|
230 | |
---|
231 | g_step = &go->go_step[ah->ah_gain.g_step_idx]; |
---|
232 | |
---|
233 | if (ah->ah_rf_banks == NULL) |
---|
234 | return 0; |
---|
235 | |
---|
236 | rf = ah->ah_rf_banks; |
---|
237 | ah->ah_gain.g_f_corr = 0; |
---|
238 | |
---|
239 | /* No VGA (Variable Gain Amplifier) override, skip */ |
---|
240 | if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, 0) != 1) |
---|
241 | return 0; |
---|
242 | |
---|
243 | /* Mix gain stepping */ |
---|
244 | step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, 0); |
---|
245 | |
---|
246 | /* Mix gain override */ |
---|
247 | mix = g_step->gos_param[0]; |
---|
248 | |
---|
249 | switch (mix) { |
---|
250 | case 3: |
---|
251 | ah->ah_gain.g_f_corr = step * 2; |
---|
252 | break; |
---|
253 | case 2: |
---|
254 | ah->ah_gain.g_f_corr = (step - 5) * 2; |
---|
255 | break; |
---|
256 | case 1: |
---|
257 | ah->ah_gain.g_f_corr = step; |
---|
258 | break; |
---|
259 | default: |
---|
260 | ah->ah_gain.g_f_corr = 0; |
---|
261 | break; |
---|
262 | } |
---|
263 | |
---|
264 | return ah->ah_gain.g_f_corr; |
---|
265 | } |
---|
266 | |
---|
267 | /* Check if current gain_F measurement is in the range of our |
---|
268 | * power detector windows. If we get a measurement outside range |
---|
269 | * we know it's not accurate (detectors can't measure anything outside |
---|
270 | * their detection window) so we must ignore it */ |
---|
271 | static int ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah) |
---|
272 | { |
---|
273 | const struct ath5k_rf_reg *rf_regs; |
---|
274 | u32 step, mix_ovr, level[4]; |
---|
275 | u32 *rf; |
---|
276 | |
---|
277 | if (ah->ah_rf_banks == NULL) |
---|
278 | return 0; |
---|
279 | |
---|
280 | rf = ah->ah_rf_banks; |
---|
281 | |
---|
282 | if (ah->ah_radio == AR5K_RF5111) { |
---|
283 | |
---|
284 | rf_regs = rf_regs_5111; |
---|
285 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); |
---|
286 | |
---|
287 | step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP, |
---|
288 | 0); |
---|
289 | |
---|
290 | level[0] = 0; |
---|
291 | level[1] = (step == 63) ? 50 : step + 4; |
---|
292 | level[2] = (step != 63) ? 64 : level[0]; |
---|
293 | level[3] = level[2] + 50 ; |
---|
294 | |
---|
295 | ah->ah_gain.g_high = level[3] - |
---|
296 | (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5); |
---|
297 | ah->ah_gain.g_low = level[0] + |
---|
298 | (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0); |
---|
299 | } else { |
---|
300 | |
---|
301 | rf_regs = rf_regs_5112; |
---|
302 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); |
---|
303 | |
---|
304 | mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, |
---|
305 | 0); |
---|
306 | |
---|
307 | level[0] = level[2] = 0; |
---|
308 | |
---|
309 | if (mix_ovr == 1) { |
---|
310 | level[1] = level[3] = 83; |
---|
311 | } else { |
---|
312 | level[1] = level[3] = 107; |
---|
313 | ah->ah_gain.g_high = 55; |
---|
314 | } |
---|
315 | } |
---|
316 | |
---|
317 | return (ah->ah_gain.g_current >= level[0] && |
---|
318 | ah->ah_gain.g_current <= level[1]) || |
---|
319 | (ah->ah_gain.g_current >= level[2] && |
---|
320 | ah->ah_gain.g_current <= level[3]); |
---|
321 | } |
---|
322 | |
---|
323 | /* Perform gain_F adjustment by choosing the right set |
---|
324 | * of parameters from rf gain optimization ladder */ |
---|
325 | static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah) |
---|
326 | { |
---|
327 | const struct ath5k_gain_opt *go; |
---|
328 | const struct ath5k_gain_opt_step *g_step; |
---|
329 | int ret = 0; |
---|
330 | |
---|
331 | switch (ah->ah_radio) { |
---|
332 | case AR5K_RF5111: |
---|
333 | go = &rfgain_opt_5111; |
---|
334 | break; |
---|
335 | case AR5K_RF5112: |
---|
336 | go = &rfgain_opt_5112; |
---|
337 | break; |
---|
338 | default: |
---|
339 | return 0; |
---|
340 | } |
---|
341 | |
---|
342 | g_step = &go->go_step[ah->ah_gain.g_step_idx]; |
---|
343 | |
---|
344 | if (ah->ah_gain.g_current >= ah->ah_gain.g_high) { |
---|
345 | |
---|
346 | /* Reached maximum */ |
---|
347 | if (ah->ah_gain.g_step_idx == 0) |
---|
348 | return -1; |
---|
349 | |
---|
350 | for (ah->ah_gain.g_target = ah->ah_gain.g_current; |
---|
351 | ah->ah_gain.g_target >= ah->ah_gain.g_high && |
---|
352 | ah->ah_gain.g_step_idx > 0; |
---|
353 | g_step = &go->go_step[ah->ah_gain.g_step_idx]) |
---|
354 | ah->ah_gain.g_target -= 2 * |
---|
355 | (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain - |
---|
356 | g_step->gos_gain); |
---|
357 | |
---|
358 | ret = 1; |
---|
359 | goto done; |
---|
360 | } |
---|
361 | |
---|
362 | if (ah->ah_gain.g_current <= ah->ah_gain.g_low) { |
---|
363 | |
---|
364 | /* Reached minimum */ |
---|
365 | if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1)) |
---|
366 | return -2; |
---|
367 | |
---|
368 | for (ah->ah_gain.g_target = ah->ah_gain.g_current; |
---|
369 | ah->ah_gain.g_target <= ah->ah_gain.g_low && |
---|
370 | ah->ah_gain.g_step_idx < go->go_steps_count-1; |
---|
371 | g_step = &go->go_step[ah->ah_gain.g_step_idx]) |
---|
372 | ah->ah_gain.g_target -= 2 * |
---|
373 | (go->go_step[++ah->ah_gain.g_step_idx].gos_gain - |
---|
374 | g_step->gos_gain); |
---|
375 | |
---|
376 | ret = 2; |
---|
377 | goto done; |
---|
378 | } |
---|
379 | |
---|
380 | done: |
---|
381 | DBG2("ath5k RF adjust: ret %d, gain step %d, current gain %d, " |
---|
382 | "target gain %d\n", ret, ah->ah_gain.g_step_idx, |
---|
383 | ah->ah_gain.g_current, ah->ah_gain.g_target); |
---|
384 | |
---|
385 | return ret; |
---|
386 | } |
---|
387 | |
---|
388 | /* Main callback for thermal rf gain calibration engine |
---|
389 | * Check for a new gain reading and schedule an adjustment |
---|
390 | * if needed. |
---|
391 | * |
---|
392 | * TODO: Use sw interrupt to schedule reset if gain_F needs |
---|
393 | * adjustment */ |
---|
394 | enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah) |
---|
395 | { |
---|
396 | u32 data, type; |
---|
397 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
---|
398 | |
---|
399 | if (ah->ah_rf_banks == NULL || |
---|
400 | ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE) |
---|
401 | return AR5K_RFGAIN_INACTIVE; |
---|
402 | |
---|
403 | /* No check requested, either engine is inactive |
---|
404 | * or an adjustment is already requested */ |
---|
405 | if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED) |
---|
406 | goto done; |
---|
407 | |
---|
408 | /* Read the PAPD (Peak to Average Power Detector) |
---|
409 | * register */ |
---|
410 | data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE); |
---|
411 | |
---|
412 | /* No probe is scheduled, read gain_F measurement */ |
---|
413 | if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) { |
---|
414 | ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S; |
---|
415 | type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE); |
---|
416 | |
---|
417 | /* If tx packet is CCK correct the gain_F measurement |
---|
418 | * by cck ofdm gain delta */ |
---|
419 | if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) { |
---|
420 | if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) |
---|
421 | ah->ah_gain.g_current += |
---|
422 | ee->ee_cck_ofdm_gain_delta; |
---|
423 | else |
---|
424 | ah->ah_gain.g_current += |
---|
425 | AR5K_GAIN_CCK_PROBE_CORR; |
---|
426 | } |
---|
427 | |
---|
428 | /* Further correct gain_F measurement for |
---|
429 | * RF5112A radios */ |
---|
430 | if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { |
---|
431 | ath5k_hw_rf_gainf_corr(ah); |
---|
432 | ah->ah_gain.g_current = |
---|
433 | ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ? |
---|
434 | (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) : |
---|
435 | 0; |
---|
436 | } |
---|
437 | |
---|
438 | /* Check if measurement is ok and if we need |
---|
439 | * to adjust gain, schedule a gain adjustment, |
---|
440 | * else switch back to the acive state */ |
---|
441 | if (ath5k_hw_rf_check_gainf_readback(ah) && |
---|
442 | AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) && |
---|
443 | ath5k_hw_rf_gainf_adjust(ah)) { |
---|
444 | ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE; |
---|
445 | } else { |
---|
446 | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; |
---|
447 | } |
---|
448 | } |
---|
449 | |
---|
450 | done: |
---|
451 | return ah->ah_gain.g_state; |
---|
452 | } |
---|
453 | |
---|
454 | /* Write initial rf gain table to set the RF sensitivity |
---|
455 | * this one works on all RF chips and has nothing to do |
---|
456 | * with gain_F calibration */ |
---|
457 | int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq) |
---|
458 | { |
---|
459 | const struct ath5k_ini_rfgain *ath5k_rfg; |
---|
460 | unsigned int i, size; |
---|
461 | |
---|
462 | switch (ah->ah_radio) { |
---|
463 | case AR5K_RF5111: |
---|
464 | ath5k_rfg = rfgain_5111; |
---|
465 | size = ARRAY_SIZE(rfgain_5111); |
---|
466 | break; |
---|
467 | case AR5K_RF5112: |
---|
468 | ath5k_rfg = rfgain_5112; |
---|
469 | size = ARRAY_SIZE(rfgain_5112); |
---|
470 | break; |
---|
471 | case AR5K_RF2413: |
---|
472 | ath5k_rfg = rfgain_2413; |
---|
473 | size = ARRAY_SIZE(rfgain_2413); |
---|
474 | break; |
---|
475 | case AR5K_RF2316: |
---|
476 | ath5k_rfg = rfgain_2316; |
---|
477 | size = ARRAY_SIZE(rfgain_2316); |
---|
478 | break; |
---|
479 | case AR5K_RF5413: |
---|
480 | ath5k_rfg = rfgain_5413; |
---|
481 | size = ARRAY_SIZE(rfgain_5413); |
---|
482 | break; |
---|
483 | case AR5K_RF2317: |
---|
484 | case AR5K_RF2425: |
---|
485 | ath5k_rfg = rfgain_2425; |
---|
486 | size = ARRAY_SIZE(rfgain_2425); |
---|
487 | break; |
---|
488 | default: |
---|
489 | return -EINVAL; |
---|
490 | } |
---|
491 | |
---|
492 | switch (freq) { |
---|
493 | case AR5K_INI_RFGAIN_2GHZ: |
---|
494 | case AR5K_INI_RFGAIN_5GHZ: |
---|
495 | break; |
---|
496 | default: |
---|
497 | return -EINVAL; |
---|
498 | } |
---|
499 | |
---|
500 | for (i = 0; i < size; i++) { |
---|
501 | AR5K_REG_WAIT(i); |
---|
502 | ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq], |
---|
503 | (u32)ath5k_rfg[i].rfg_register); |
---|
504 | } |
---|
505 | |
---|
506 | return 0; |
---|
507 | } |
---|
508 | |
---|
509 | |
---|
510 | |
---|
511 | /********************\ |
---|
512 | * RF Registers setup * |
---|
513 | \********************/ |
---|
514 | |
---|
515 | |
---|
516 | /* |
---|
517 | * Setup RF registers by writing rf buffer on hw |
---|
518 | */ |
---|
519 | int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct net80211_channel *channel, |
---|
520 | unsigned int mode) |
---|
521 | { |
---|
522 | const struct ath5k_rf_reg *rf_regs; |
---|
523 | const struct ath5k_ini_rfbuffer *ini_rfb; |
---|
524 | const struct ath5k_gain_opt *go = NULL; |
---|
525 | const struct ath5k_gain_opt_step *g_step; |
---|
526 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
---|
527 | u8 ee_mode = 0; |
---|
528 | u32 *rfb; |
---|
529 | int obdb = -1, bank = -1; |
---|
530 | unsigned i; |
---|
531 | |
---|
532 | switch (ah->ah_radio) { |
---|
533 | case AR5K_RF5111: |
---|
534 | rf_regs = rf_regs_5111; |
---|
535 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); |
---|
536 | ini_rfb = rfb_5111; |
---|
537 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111); |
---|
538 | go = &rfgain_opt_5111; |
---|
539 | break; |
---|
540 | case AR5K_RF5112: |
---|
541 | if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { |
---|
542 | rf_regs = rf_regs_5112a; |
---|
543 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); |
---|
544 | ini_rfb = rfb_5112a; |
---|
545 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a); |
---|
546 | } else { |
---|
547 | rf_regs = rf_regs_5112; |
---|
548 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); |
---|
549 | ini_rfb = rfb_5112; |
---|
550 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112); |
---|
551 | } |
---|
552 | go = &rfgain_opt_5112; |
---|
553 | break; |
---|
554 | case AR5K_RF2413: |
---|
555 | rf_regs = rf_regs_2413; |
---|
556 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413); |
---|
557 | ini_rfb = rfb_2413; |
---|
558 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413); |
---|
559 | break; |
---|
560 | case AR5K_RF2316: |
---|
561 | rf_regs = rf_regs_2316; |
---|
562 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316); |
---|
563 | ini_rfb = rfb_2316; |
---|
564 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316); |
---|
565 | break; |
---|
566 | case AR5K_RF5413: |
---|
567 | rf_regs = rf_regs_5413; |
---|
568 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413); |
---|
569 | ini_rfb = rfb_5413; |
---|
570 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413); |
---|
571 | break; |
---|
572 | case AR5K_RF2317: |
---|
573 | rf_regs = rf_regs_2425; |
---|
574 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); |
---|
575 | ini_rfb = rfb_2317; |
---|
576 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317); |
---|
577 | break; |
---|
578 | case AR5K_RF2425: |
---|
579 | rf_regs = rf_regs_2425; |
---|
580 | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); |
---|
581 | if (ah->ah_mac_srev < AR5K_SREV_AR2417) { |
---|
582 | ini_rfb = rfb_2425; |
---|
583 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425); |
---|
584 | } else { |
---|
585 | ini_rfb = rfb_2417; |
---|
586 | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417); |
---|
587 | } |
---|
588 | break; |
---|
589 | default: |
---|
590 | return -EINVAL; |
---|
591 | } |
---|
592 | |
---|
593 | /* If it's the first time we set rf buffer, allocate |
---|
594 | * ah->ah_rf_banks based on ah->ah_rf_banks_size |
---|
595 | * we set above */ |
---|
596 | if (ah->ah_rf_banks == NULL) { |
---|
597 | ah->ah_rf_banks = malloc(sizeof(u32) * ah->ah_rf_banks_size); |
---|
598 | if (ah->ah_rf_banks == NULL) { |
---|
599 | return -ENOMEM; |
---|
600 | } |
---|
601 | } |
---|
602 | |
---|
603 | /* Copy values to modify them */ |
---|
604 | rfb = ah->ah_rf_banks; |
---|
605 | |
---|
606 | for (i = 0; i < ah->ah_rf_banks_size; i++) { |
---|
607 | if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) { |
---|
608 | DBG("ath5k: invalid RF register bank\n"); |
---|
609 | return -EINVAL; |
---|
610 | } |
---|
611 | |
---|
612 | /* Bank changed, write down the offset */ |
---|
613 | if (bank != ini_rfb[i].rfb_bank) { |
---|
614 | bank = ini_rfb[i].rfb_bank; |
---|
615 | ah->ah_offset[bank] = i; |
---|
616 | } |
---|
617 | |
---|
618 | rfb[i] = ini_rfb[i].rfb_mode_data[mode]; |
---|
619 | } |
---|
620 | |
---|
621 | /* Set Output and Driver bias current (OB/DB) */ |
---|
622 | if (channel->hw_value & CHANNEL_2GHZ) { |
---|
623 | |
---|
624 | if (channel->hw_value & CHANNEL_CCK) |
---|
625 | ee_mode = AR5K_EEPROM_MODE_11B; |
---|
626 | else |
---|
627 | ee_mode = AR5K_EEPROM_MODE_11G; |
---|
628 | |
---|
629 | /* For RF511X/RF211X combination we |
---|
630 | * use b_OB and b_DB parameters stored |
---|
631 | * in eeprom on ee->ee_ob[ee_mode][0] |
---|
632 | * |
---|
633 | * For all other chips we use OB/DB for 2Ghz |
---|
634 | * stored in the b/g modal section just like |
---|
635 | * 802.11a on ee->ee_ob[ee_mode][1] */ |
---|
636 | if ((ah->ah_radio == AR5K_RF5111) || |
---|
637 | (ah->ah_radio == AR5K_RF5112)) |
---|
638 | obdb = 0; |
---|
639 | else |
---|
640 | obdb = 1; |
---|
641 | |
---|
642 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], |
---|
643 | AR5K_RF_OB_2GHZ, 1); |
---|
644 | |
---|
645 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], |
---|
646 | AR5K_RF_DB_2GHZ, 1); |
---|
647 | |
---|
648 | /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */ |
---|
649 | } else if ((channel->hw_value & CHANNEL_5GHZ) || |
---|
650 | (ah->ah_radio == AR5K_RF5111)) { |
---|
651 | |
---|
652 | /* For 11a, Turbo and XR we need to choose |
---|
653 | * OB/DB based on frequency range */ |
---|
654 | ee_mode = AR5K_EEPROM_MODE_11A; |
---|
655 | obdb = channel->center_freq >= 5725 ? 3 : |
---|
656 | (channel->center_freq >= 5500 ? 2 : |
---|
657 | (channel->center_freq >= 5260 ? 1 : |
---|
658 | (channel->center_freq > 4000 ? 0 : -1))); |
---|
659 | |
---|
660 | if (obdb < 0) |
---|
661 | return -EINVAL; |
---|
662 | |
---|
663 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], |
---|
664 | AR5K_RF_OB_5GHZ, 1); |
---|
665 | |
---|
666 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], |
---|
667 | AR5K_RF_DB_5GHZ, 1); |
---|
668 | } |
---|
669 | |
---|
670 | g_step = &go->go_step[ah->ah_gain.g_step_idx]; |
---|
671 | |
---|
672 | /* Bank Modifications (chip-specific) */ |
---|
673 | if (ah->ah_radio == AR5K_RF5111) { |
---|
674 | |
---|
675 | /* Set gain_F settings according to current step */ |
---|
676 | if (channel->hw_value & CHANNEL_OFDM) { |
---|
677 | |
---|
678 | AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL, |
---|
679 | AR5K_PHY_FRAME_CTL_TX_CLIP, |
---|
680 | g_step->gos_param[0]); |
---|
681 | |
---|
682 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], |
---|
683 | AR5K_RF_PWD_90, 1); |
---|
684 | |
---|
685 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], |
---|
686 | AR5K_RF_PWD_84, 1); |
---|
687 | |
---|
688 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], |
---|
689 | AR5K_RF_RFGAIN_SEL, 1); |
---|
690 | |
---|
691 | /* We programmed gain_F parameters, switch back |
---|
692 | * to active state */ |
---|
693 | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; |
---|
694 | |
---|
695 | } |
---|
696 | |
---|
697 | /* Bank 6/7 setup */ |
---|
698 | |
---|
699 | ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode], |
---|
700 | AR5K_RF_PWD_XPD, 1); |
---|
701 | |
---|
702 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode], |
---|
703 | AR5K_RF_XPD_GAIN, 1); |
---|
704 | |
---|
705 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], |
---|
706 | AR5K_RF_GAIN_I, 1); |
---|
707 | |
---|
708 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], |
---|
709 | AR5K_RF_PLO_SEL, 1); |
---|
710 | |
---|
711 | /* TODO: Half/quarter channel support */ |
---|
712 | } |
---|
713 | |
---|
714 | if (ah->ah_radio == AR5K_RF5112) { |
---|
715 | |
---|
716 | /* Set gain_F settings according to current step */ |
---|
717 | if (channel->hw_value & CHANNEL_OFDM) { |
---|
718 | |
---|
719 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0], |
---|
720 | AR5K_RF_MIXGAIN_OVR, 1); |
---|
721 | |
---|
722 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], |
---|
723 | AR5K_RF_PWD_138, 1); |
---|
724 | |
---|
725 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], |
---|
726 | AR5K_RF_PWD_137, 1); |
---|
727 | |
---|
728 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], |
---|
729 | AR5K_RF_PWD_136, 1); |
---|
730 | |
---|
731 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4], |
---|
732 | AR5K_RF_PWD_132, 1); |
---|
733 | |
---|
734 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5], |
---|
735 | AR5K_RF_PWD_131, 1); |
---|
736 | |
---|
737 | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6], |
---|
738 | AR5K_RF_PWD_130, 1); |
---|
739 | |
---|
740 | /* We programmed gain_F parameters, switch back |
---|
741 | * to active state */ |
---|
742 | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; |
---|
743 | } |
---|
744 | |
---|
745 | /* Bank 6/7 setup */ |
---|
746 | |
---|
747 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], |
---|
748 | AR5K_RF_XPD_SEL, 1); |
---|
749 | |
---|
750 | if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) { |
---|
751 | /* Rev. 1 supports only one xpd */ |
---|
752 | ath5k_hw_rfb_op(ah, rf_regs, |
---|
753 | ee->ee_x_gain[ee_mode], |
---|
754 | AR5K_RF_XPD_GAIN, 1); |
---|
755 | |
---|
756 | } else { |
---|
757 | /* TODO: Set high and low gain bits */ |
---|
758 | ath5k_hw_rfb_op(ah, rf_regs, |
---|
759 | ee->ee_x_gain[ee_mode], |
---|
760 | AR5K_RF_PD_GAIN_LO, 1); |
---|
761 | ath5k_hw_rfb_op(ah, rf_regs, |
---|
762 | ee->ee_x_gain[ee_mode], |
---|
763 | AR5K_RF_PD_GAIN_HI, 1); |
---|
764 | |
---|
765 | /* Lower synth voltage on Rev 2 */ |
---|
766 | ath5k_hw_rfb_op(ah, rf_regs, 2, |
---|
767 | AR5K_RF_HIGH_VC_CP, 1); |
---|
768 | |
---|
769 | ath5k_hw_rfb_op(ah, rf_regs, 2, |
---|
770 | AR5K_RF_MID_VC_CP, 1); |
---|
771 | |
---|
772 | ath5k_hw_rfb_op(ah, rf_regs, 2, |
---|
773 | AR5K_RF_LOW_VC_CP, 1); |
---|
774 | |
---|
775 | ath5k_hw_rfb_op(ah, rf_regs, 2, |
---|
776 | AR5K_RF_PUSH_UP, 1); |
---|
777 | |
---|
778 | /* Decrease power consumption on 5213+ BaseBand */ |
---|
779 | if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { |
---|
780 | ath5k_hw_rfb_op(ah, rf_regs, 1, |
---|
781 | AR5K_RF_PAD2GND, 1); |
---|
782 | |
---|
783 | ath5k_hw_rfb_op(ah, rf_regs, 1, |
---|
784 | AR5K_RF_XB2_LVL, 1); |
---|
785 | |
---|
786 | ath5k_hw_rfb_op(ah, rf_regs, 1, |
---|
787 | AR5K_RF_XB5_LVL, 1); |
---|
788 | |
---|
789 | ath5k_hw_rfb_op(ah, rf_regs, 1, |
---|
790 | AR5K_RF_PWD_167, 1); |
---|
791 | |
---|
792 | ath5k_hw_rfb_op(ah, rf_regs, 1, |
---|
793 | AR5K_RF_PWD_166, 1); |
---|
794 | } |
---|
795 | } |
---|
796 | |
---|
797 | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], |
---|
798 | AR5K_RF_GAIN_I, 1); |
---|
799 | |
---|
800 | /* TODO: Half/quarter channel support */ |
---|
801 | |
---|
802 | } |
---|
803 | |
---|
804 | if (ah->ah_radio == AR5K_RF5413 && |
---|
805 | channel->hw_value & CHANNEL_2GHZ) { |
---|
806 | |
---|
807 | ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE, |
---|
808 | 1); |
---|
809 | |
---|
810 | /* Set optimum value for early revisions (on pci-e chips) */ |
---|
811 | if (ah->ah_mac_srev >= AR5K_SREV_AR5424 && |
---|
812 | ah->ah_mac_srev < AR5K_SREV_AR5413) |
---|
813 | ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3), |
---|
814 | AR5K_RF_PWD_ICLOBUF_2G, 1); |
---|
815 | |
---|
816 | } |
---|
817 | |
---|
818 | /* Write RF banks on hw */ |
---|
819 | for (i = 0; i < ah->ah_rf_banks_size; i++) { |
---|
820 | AR5K_REG_WAIT(i); |
---|
821 | ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register); |
---|
822 | } |
---|
823 | |
---|
824 | return 0; |
---|
825 | } |
---|
826 | |
---|
827 | |
---|
828 | /**************************\ |
---|
829 | PHY/RF channel functions |
---|
830 | \**************************/ |
---|
831 | |
---|
832 | /* |
---|
833 | * Check if a channel is supported |
---|
834 | */ |
---|
835 | int ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags) |
---|
836 | { |
---|
837 | /* Check if the channel is in our supported range */ |
---|
838 | if (flags & CHANNEL_2GHZ) { |
---|
839 | if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) && |
---|
840 | (freq <= ah->ah_capabilities.cap_range.range_2ghz_max)) |
---|
841 | return 1; |
---|
842 | } else if (flags & CHANNEL_5GHZ) |
---|
843 | if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) && |
---|
844 | (freq <= ah->ah_capabilities.cap_range.range_5ghz_max)) |
---|
845 | return 1; |
---|
846 | |
---|
847 | return 0; |
---|
848 | } |
---|
849 | |
---|
850 | /* |
---|
851 | * Convertion needed for RF5110 |
---|
852 | */ |
---|
853 | static u32 ath5k_hw_rf5110_chan2athchan(struct net80211_channel *channel) |
---|
854 | { |
---|
855 | u32 athchan; |
---|
856 | |
---|
857 | /* |
---|
858 | * Convert IEEE channel/MHz to an internal channel value used |
---|
859 | * by the AR5210 chipset. This has not been verified with |
---|
860 | * newer chipsets like the AR5212A who have a completely |
---|
861 | * different RF/PHY part. |
---|
862 | */ |
---|
863 | athchan = (ath5k_hw_bitswap((ath5k_freq_to_channel(channel->center_freq) |
---|
864 | - 24) / 2, 5) << 1) |
---|
865 | | (1 << 6) | 0x1; |
---|
866 | return athchan; |
---|
867 | } |
---|
868 | |
---|
869 | /* |
---|
870 | * Set channel on RF5110 |
---|
871 | */ |
---|
872 | static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah, |
---|
873 | struct net80211_channel *channel) |
---|
874 | { |
---|
875 | u32 data; |
---|
876 | |
---|
877 | /* |
---|
878 | * Set the channel and wait |
---|
879 | */ |
---|
880 | data = ath5k_hw_rf5110_chan2athchan(channel); |
---|
881 | ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER); |
---|
882 | ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0); |
---|
883 | mdelay(1); |
---|
884 | |
---|
885 | return 0; |
---|
886 | } |
---|
887 | |
---|
888 | /* |
---|
889 | * Convertion needed for 5111 |
---|
890 | */ |
---|
891 | static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee, |
---|
892 | struct ath5k_athchan_2ghz *athchan) |
---|
893 | { |
---|
894 | int channel; |
---|
895 | |
---|
896 | /* Cast this value to catch negative channel numbers (>= -19) */ |
---|
897 | channel = (int)ieee; |
---|
898 | |
---|
899 | /* |
---|
900 | * Map 2GHz IEEE channel to 5GHz Atheros channel |
---|
901 | */ |
---|
902 | if (channel <= 13) { |
---|
903 | athchan->a2_athchan = 115 + channel; |
---|
904 | athchan->a2_flags = 0x46; |
---|
905 | } else if (channel == 14) { |
---|
906 | athchan->a2_athchan = 124; |
---|
907 | athchan->a2_flags = 0x44; |
---|
908 | } else if (channel >= 15 && channel <= 26) { |
---|
909 | athchan->a2_athchan = ((channel - 14) * 4) + 132; |
---|
910 | athchan->a2_flags = 0x46; |
---|
911 | } else |
---|
912 | return -EINVAL; |
---|
913 | |
---|
914 | return 0; |
---|
915 | } |
---|
916 | |
---|
917 | /* |
---|
918 | * Set channel on 5111 |
---|
919 | */ |
---|
920 | static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah, |
---|
921 | struct net80211_channel *channel) |
---|
922 | { |
---|
923 | struct ath5k_athchan_2ghz ath5k_channel_2ghz; |
---|
924 | unsigned int ath5k_channel = ath5k_freq_to_channel(channel->center_freq); |
---|
925 | u32 data0, data1, clock; |
---|
926 | int ret; |
---|
927 | |
---|
928 | /* |
---|
929 | * Set the channel on the RF5111 radio |
---|
930 | */ |
---|
931 | data0 = data1 = 0; |
---|
932 | |
---|
933 | if (channel->hw_value & CHANNEL_2GHZ) { |
---|
934 | /* Map 2GHz channel to 5GHz Atheros channel ID */ |
---|
935 | ret = ath5k_hw_rf5111_chan2athchan(ath5k_channel, |
---|
936 | &ath5k_channel_2ghz); |
---|
937 | if (ret) |
---|
938 | return ret; |
---|
939 | |
---|
940 | ath5k_channel = ath5k_channel_2ghz.a2_athchan; |
---|
941 | data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff) |
---|
942 | << 5) | (1 << 4); |
---|
943 | } |
---|
944 | |
---|
945 | if (ath5k_channel < 145 || !(ath5k_channel & 1)) { |
---|
946 | clock = 1; |
---|
947 | data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) | |
---|
948 | (clock << 1) | (1 << 10) | 1; |
---|
949 | } else { |
---|
950 | clock = 0; |
---|
951 | data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff) |
---|
952 | << 2) | (clock << 1) | (1 << 10) | 1; |
---|
953 | } |
---|
954 | |
---|
955 | ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8), |
---|
956 | AR5K_RF_BUFFER); |
---|
957 | ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00), |
---|
958 | AR5K_RF_BUFFER_CONTROL_3); |
---|
959 | |
---|
960 | return 0; |
---|
961 | } |
---|
962 | |
---|
963 | /* |
---|
964 | * Set channel on 5112 and newer |
---|
965 | */ |
---|
966 | static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah, |
---|
967 | struct net80211_channel *channel) |
---|
968 | { |
---|
969 | u32 data, data0, data1, data2; |
---|
970 | u16 c; |
---|
971 | |
---|
972 | data = data0 = data1 = data2 = 0; |
---|
973 | c = channel->center_freq; |
---|
974 | |
---|
975 | if (c < 4800) { |
---|
976 | if (!((c - 2224) % 5)) { |
---|
977 | data0 = ((2 * (c - 704)) - 3040) / 10; |
---|
978 | data1 = 1; |
---|
979 | } else if (!((c - 2192) % 5)) { |
---|
980 | data0 = ((2 * (c - 672)) - 3040) / 10; |
---|
981 | data1 = 0; |
---|
982 | } else |
---|
983 | return -EINVAL; |
---|
984 | |
---|
985 | data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8); |
---|
986 | } else if ((c - (c % 5)) != 2 || c > 5435) { |
---|
987 | if (!(c % 20) && c >= 5120) { |
---|
988 | data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); |
---|
989 | data2 = ath5k_hw_bitswap(3, 2); |
---|
990 | } else if (!(c % 10)) { |
---|
991 | data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); |
---|
992 | data2 = ath5k_hw_bitswap(2, 2); |
---|
993 | } else if (!(c % 5)) { |
---|
994 | data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); |
---|
995 | data2 = ath5k_hw_bitswap(1, 2); |
---|
996 | } else |
---|
997 | return -EINVAL; |
---|
998 | } else { |
---|
999 | data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8); |
---|
1000 | data2 = ath5k_hw_bitswap(0, 2); |
---|
1001 | } |
---|
1002 | |
---|
1003 | data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001; |
---|
1004 | |
---|
1005 | ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); |
---|
1006 | ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); |
---|
1007 | |
---|
1008 | return 0; |
---|
1009 | } |
---|
1010 | |
---|
1011 | /* |
---|
1012 | * Set the channel on the RF2425 |
---|
1013 | */ |
---|
1014 | static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah, |
---|
1015 | struct net80211_channel *channel) |
---|
1016 | { |
---|
1017 | u32 data, data0, data2; |
---|
1018 | u16 c; |
---|
1019 | |
---|
1020 | data = data0 = data2 = 0; |
---|
1021 | c = channel->center_freq; |
---|
1022 | |
---|
1023 | if (c < 4800) { |
---|
1024 | data0 = ath5k_hw_bitswap((c - 2272), 8); |
---|
1025 | data2 = 0; |
---|
1026 | /* ? 5GHz ? */ |
---|
1027 | } else if ((c - (c % 5)) != 2 || c > 5435) { |
---|
1028 | if (!(c % 20) && c < 5120) |
---|
1029 | data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); |
---|
1030 | else if (!(c % 10)) |
---|
1031 | data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); |
---|
1032 | else if (!(c % 5)) |
---|
1033 | data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); |
---|
1034 | else |
---|
1035 | return -EINVAL; |
---|
1036 | data2 = ath5k_hw_bitswap(1, 2); |
---|
1037 | } else { |
---|
1038 | data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8); |
---|
1039 | data2 = ath5k_hw_bitswap(0, 2); |
---|
1040 | } |
---|
1041 | |
---|
1042 | data = (data0 << 4) | data2 << 2 | 0x1001; |
---|
1043 | |
---|
1044 | ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); |
---|
1045 | ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); |
---|
1046 | |
---|
1047 | return 0; |
---|
1048 | } |
---|
1049 | |
---|
1050 | /* |
---|
1051 | * Set a channel on the radio chip |
---|
1052 | */ |
---|
1053 | int ath5k_hw_channel(struct ath5k_hw *ah, struct net80211_channel *channel) |
---|
1054 | { |
---|
1055 | int ret; |
---|
1056 | /* |
---|
1057 | * Check bounds supported by the PHY (we don't care about regultory |
---|
1058 | * restrictions at this point). Note: hw_value already has the band |
---|
1059 | * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok() |
---|
1060 | * of the band by that */ |
---|
1061 | if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) { |
---|
1062 | DBG("ath5k: channel frequency (%d MHz) out of supported " |
---|
1063 | "range\n", channel->center_freq); |
---|
1064 | return -EINVAL; |
---|
1065 | } |
---|
1066 | |
---|
1067 | /* |
---|
1068 | * Set the channel and wait |
---|
1069 | */ |
---|
1070 | switch (ah->ah_radio) { |
---|
1071 | case AR5K_RF5110: |
---|
1072 | ret = ath5k_hw_rf5110_channel(ah, channel); |
---|
1073 | break; |
---|
1074 | case AR5K_RF5111: |
---|
1075 | ret = ath5k_hw_rf5111_channel(ah, channel); |
---|
1076 | break; |
---|
1077 | case AR5K_RF2425: |
---|
1078 | ret = ath5k_hw_rf2425_channel(ah, channel); |
---|
1079 | break; |
---|
1080 | default: |
---|
1081 | ret = ath5k_hw_rf5112_channel(ah, channel); |
---|
1082 | break; |
---|
1083 | } |
---|
1084 | |
---|
1085 | if (ret) { |
---|
1086 | DBG("ath5k: setting channel failed: %s\n", strerror(ret)); |
---|
1087 | return ret; |
---|
1088 | } |
---|
1089 | |
---|
1090 | /* Set JAPAN setting for channel 14 */ |
---|
1091 | if (channel->center_freq == 2484) { |
---|
1092 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, |
---|
1093 | AR5K_PHY_CCKTXCTL_JAPAN); |
---|
1094 | } else { |
---|
1095 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, |
---|
1096 | AR5K_PHY_CCKTXCTL_WORLD); |
---|
1097 | } |
---|
1098 | |
---|
1099 | ah->ah_current_channel = channel; |
---|
1100 | ah->ah_turbo = (channel->hw_value == CHANNEL_T ? 1 : 0); |
---|
1101 | |
---|
1102 | return 0; |
---|
1103 | } |
---|
1104 | |
---|
1105 | /*****************\ |
---|
1106 | PHY calibration |
---|
1107 | \*****************/ |
---|
1108 | |
---|
1109 | /** |
---|
1110 | * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration |
---|
1111 | * |
---|
1112 | * @ah: struct ath5k_hw pointer we are operating on |
---|
1113 | * @freq: the channel frequency, just used for error logging |
---|
1114 | * |
---|
1115 | * This function performs a noise floor calibration of the PHY and waits for |
---|
1116 | * it to complete. Then the noise floor value is compared to some maximum |
---|
1117 | * noise floor we consider valid. |
---|
1118 | * |
---|
1119 | * Note that this is different from what the madwifi HAL does: it reads the |
---|
1120 | * noise floor and afterwards initiates the calibration. Since the noise floor |
---|
1121 | * calibration can take some time to finish, depending on the current channel |
---|
1122 | * use, that avoids the occasional timeout warnings we are seeing now. |
---|
1123 | * |
---|
1124 | * See the following link for an Atheros patent on noise floor calibration: |
---|
1125 | * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \ |
---|
1126 | * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7 |
---|
1127 | * |
---|
1128 | * XXX: Since during noise floor calibration antennas are detached according to |
---|
1129 | * the patent, we should stop tx queues here. |
---|
1130 | */ |
---|
1131 | int |
---|
1132 | ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq) |
---|
1133 | { |
---|
1134 | int ret; |
---|
1135 | unsigned int i; |
---|
1136 | s32 noise_floor; |
---|
1137 | |
---|
1138 | /* |
---|
1139 | * Enable noise floor calibration |
---|
1140 | */ |
---|
1141 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, |
---|
1142 | AR5K_PHY_AGCCTL_NF); |
---|
1143 | |
---|
1144 | ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, |
---|
1145 | AR5K_PHY_AGCCTL_NF, 0, 0); |
---|
1146 | |
---|
1147 | if (ret) { |
---|
1148 | DBG("ath5k: noise floor calibration timeout (%d MHz)\n", freq); |
---|
1149 | return -EAGAIN; |
---|
1150 | } |
---|
1151 | |
---|
1152 | /* Wait until the noise floor is calibrated and read the value */ |
---|
1153 | for (i = 20; i > 0; i--) { |
---|
1154 | mdelay(1); |
---|
1155 | noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF); |
---|
1156 | noise_floor = AR5K_PHY_NF_RVAL(noise_floor); |
---|
1157 | if (noise_floor & AR5K_PHY_NF_ACTIVE) { |
---|
1158 | noise_floor = AR5K_PHY_NF_AVAL(noise_floor); |
---|
1159 | |
---|
1160 | if (noise_floor <= AR5K_TUNE_NOISE_FLOOR) |
---|
1161 | break; |
---|
1162 | } |
---|
1163 | } |
---|
1164 | |
---|
1165 | DBG2("ath5k: noise floor %d\n", noise_floor); |
---|
1166 | |
---|
1167 | if (noise_floor > AR5K_TUNE_NOISE_FLOOR) { |
---|
1168 | DBG("ath5k: noise floor calibration failed (%d MHz)\n", freq); |
---|
1169 | return -EAGAIN; |
---|
1170 | } |
---|
1171 | |
---|
1172 | ah->ah_noise_floor = noise_floor; |
---|
1173 | |
---|
1174 | return 0; |
---|
1175 | } |
---|
1176 | |
---|
1177 | /* |
---|
1178 | * Perform a PHY calibration on RF5110 |
---|
1179 | * -Fix BPSK/QAM Constellation (I/Q correction) |
---|
1180 | * -Calculate Noise Floor |
---|
1181 | */ |
---|
1182 | static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah, |
---|
1183 | struct net80211_channel *channel) |
---|
1184 | { |
---|
1185 | u32 phy_sig, phy_agc, phy_sat, beacon; |
---|
1186 | int ret; |
---|
1187 | |
---|
1188 | /* |
---|
1189 | * Disable beacons and RX/TX queues, wait |
---|
1190 | */ |
---|
1191 | AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210, |
---|
1192 | AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210); |
---|
1193 | beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210); |
---|
1194 | ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210); |
---|
1195 | |
---|
1196 | mdelay(2); |
---|
1197 | |
---|
1198 | /* |
---|
1199 | * Set the channel (with AGC turned off) |
---|
1200 | */ |
---|
1201 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); |
---|
1202 | udelay(10); |
---|
1203 | ret = ath5k_hw_channel(ah, channel); |
---|
1204 | |
---|
1205 | /* |
---|
1206 | * Activate PHY and wait |
---|
1207 | */ |
---|
1208 | ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); |
---|
1209 | mdelay(1); |
---|
1210 | |
---|
1211 | AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); |
---|
1212 | |
---|
1213 | if (ret) |
---|
1214 | return ret; |
---|
1215 | |
---|
1216 | /* |
---|
1217 | * Calibrate the radio chip |
---|
1218 | */ |
---|
1219 | |
---|
1220 | /* Remember normal state */ |
---|
1221 | phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG); |
---|
1222 | phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE); |
---|
1223 | phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT); |
---|
1224 | |
---|
1225 | /* Update radio registers */ |
---|
1226 | ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) | |
---|
1227 | AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG); |
---|
1228 | |
---|
1229 | ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI | |
---|
1230 | AR5K_PHY_AGCCOARSE_LO)) | |
---|
1231 | AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) | |
---|
1232 | AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE); |
---|
1233 | |
---|
1234 | ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT | |
---|
1235 | AR5K_PHY_ADCSAT_THR)) | |
---|
1236 | AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) | |
---|
1237 | AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT); |
---|
1238 | |
---|
1239 | udelay(20); |
---|
1240 | |
---|
1241 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); |
---|
1242 | udelay(10); |
---|
1243 | ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG); |
---|
1244 | AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); |
---|
1245 | |
---|
1246 | mdelay(1); |
---|
1247 | |
---|
1248 | /* |
---|
1249 | * Enable calibration and wait until completion |
---|
1250 | */ |
---|
1251 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL); |
---|
1252 | |
---|
1253 | ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, |
---|
1254 | AR5K_PHY_AGCCTL_CAL, 0, 0); |
---|
1255 | |
---|
1256 | /* Reset to normal state */ |
---|
1257 | ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG); |
---|
1258 | ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE); |
---|
1259 | ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT); |
---|
1260 | |
---|
1261 | if (ret) { |
---|
1262 | DBG("ath5k: calibration timeout (%d MHz)\n", |
---|
1263 | channel->center_freq); |
---|
1264 | return ret; |
---|
1265 | } |
---|
1266 | |
---|
1267 | ath5k_hw_noise_floor_calibration(ah, channel->center_freq); |
---|
1268 | |
---|
1269 | /* |
---|
1270 | * Re-enable RX/TX and beacons |
---|
1271 | */ |
---|
1272 | AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210, |
---|
1273 | AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210); |
---|
1274 | ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210); |
---|
1275 | |
---|
1276 | return 0; |
---|
1277 | } |
---|
1278 | |
---|
1279 | /* |
---|
1280 | * Perform a PHY calibration on RF5111/5112 and newer chips |
---|
1281 | */ |
---|
1282 | static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah, |
---|
1283 | struct net80211_channel *channel) |
---|
1284 | { |
---|
1285 | u32 i_pwr, q_pwr; |
---|
1286 | s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd; |
---|
1287 | int i; |
---|
1288 | |
---|
1289 | if (!ah->ah_calibration || |
---|
1290 | ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) |
---|
1291 | goto done; |
---|
1292 | |
---|
1293 | /* Calibration has finished, get the results and re-run */ |
---|
1294 | for (i = 0; i <= 10; i++) { |
---|
1295 | iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR); |
---|
1296 | i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I); |
---|
1297 | q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q); |
---|
1298 | } |
---|
1299 | |
---|
1300 | i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7; |
---|
1301 | q_coffd = q_pwr >> 7; |
---|
1302 | |
---|
1303 | /* No correction */ |
---|
1304 | if (i_coffd == 0 || q_coffd == 0) |
---|
1305 | goto done; |
---|
1306 | |
---|
1307 | i_coff = ((-iq_corr) / i_coffd) & 0x3f; |
---|
1308 | |
---|
1309 | /* Boundary check */ |
---|
1310 | if (i_coff > 31) |
---|
1311 | i_coff = 31; |
---|
1312 | if (i_coff < -32) |
---|
1313 | i_coff = -32; |
---|
1314 | |
---|
1315 | q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f; |
---|
1316 | |
---|
1317 | /* Boundary check */ |
---|
1318 | if (q_coff > 15) |
---|
1319 | q_coff = 15; |
---|
1320 | if (q_coff < -16) |
---|
1321 | q_coff = -16; |
---|
1322 | |
---|
1323 | /* Commit new I/Q value */ |
---|
1324 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE | |
---|
1325 | ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S)); |
---|
1326 | |
---|
1327 | /* Re-enable calibration -if we don't we'll commit |
---|
1328 | * the same values again and again */ |
---|
1329 | AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, |
---|
1330 | AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); |
---|
1331 | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); |
---|
1332 | |
---|
1333 | done: |
---|
1334 | |
---|
1335 | /* TODO: Separate noise floor calibration from I/Q calibration |
---|
1336 | * since noise floor calibration interrupts rx path while I/Q |
---|
1337 | * calibration doesn't. We don't need to run noise floor calibration |
---|
1338 | * as often as I/Q calibration.*/ |
---|
1339 | ath5k_hw_noise_floor_calibration(ah, channel->center_freq); |
---|
1340 | |
---|
1341 | /* Initiate a gain_F calibration */ |
---|
1342 | ath5k_hw_request_rfgain_probe(ah); |
---|
1343 | |
---|
1344 | return 0; |
---|
1345 | } |
---|
1346 | |
---|
1347 | /* |
---|
1348 | * Perform a PHY calibration |
---|
1349 | */ |
---|
1350 | int ath5k_hw_phy_calibrate(struct ath5k_hw *ah, |
---|
1351 | struct net80211_channel *channel) |
---|
1352 | { |
---|
1353 | int ret; |
---|
1354 | |
---|
1355 | if (ah->ah_radio == AR5K_RF5110) |
---|
1356 | ret = ath5k_hw_rf5110_calibrate(ah, channel); |
---|
1357 | else |
---|
1358 | ret = ath5k_hw_rf511x_calibrate(ah, channel); |
---|
1359 | |
---|
1360 | return ret; |
---|
1361 | } |
---|
1362 | |
---|
1363 | int ath5k_hw_phy_disable(struct ath5k_hw *ah) |
---|
1364 | { |
---|
1365 | ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); |
---|
1366 | |
---|
1367 | return 0; |
---|
1368 | } |
---|
1369 | |
---|
1370 | /********************\ |
---|
1371 | Misc PHY functions |
---|
1372 | \********************/ |
---|
1373 | |
---|
1374 | /* |
---|
1375 | * Get the PHY Chip revision |
---|
1376 | */ |
---|
1377 | u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan) |
---|
1378 | { |
---|
1379 | unsigned int i; |
---|
1380 | u32 srev; |
---|
1381 | u16 ret; |
---|
1382 | |
---|
1383 | /* |
---|
1384 | * Set the radio chip access register |
---|
1385 | */ |
---|
1386 | switch (chan) { |
---|
1387 | case CHANNEL_2GHZ: |
---|
1388 | ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0)); |
---|
1389 | break; |
---|
1390 | case CHANNEL_5GHZ: |
---|
1391 | ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); |
---|
1392 | break; |
---|
1393 | default: |
---|
1394 | return 0; |
---|
1395 | } |
---|
1396 | |
---|
1397 | mdelay(2); |
---|
1398 | |
---|
1399 | /* ...wait until PHY is ready and read the selected radio revision */ |
---|
1400 | ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34)); |
---|
1401 | |
---|
1402 | for (i = 0; i < 8; i++) |
---|
1403 | ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20)); |
---|
1404 | |
---|
1405 | if (ah->ah_version == AR5K_AR5210) { |
---|
1406 | srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf; |
---|
1407 | ret = (u16)ath5k_hw_bitswap(srev, 4) + 1; |
---|
1408 | } else { |
---|
1409 | srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff; |
---|
1410 | ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) | |
---|
1411 | ((srev & 0x0f) << 4), 8); |
---|
1412 | } |
---|
1413 | |
---|
1414 | /* Reset to the 5GHz mode */ |
---|
1415 | ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); |
---|
1416 | |
---|
1417 | return ret; |
---|
1418 | } |
---|
1419 | |
---|
1420 | void /*TODO:Boundary check*/ |
---|
1421 | ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant) |
---|
1422 | { |
---|
1423 | if (ah->ah_version != AR5K_AR5210) |
---|
1424 | ath5k_hw_reg_write(ah, ant, AR5K_DEFAULT_ANTENNA); |
---|
1425 | } |
---|
1426 | |
---|
1427 | unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah) |
---|
1428 | { |
---|
1429 | if (ah->ah_version != AR5K_AR5210) |
---|
1430 | return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA); |
---|
1431 | |
---|
1432 | return 0; /*XXX: What do we return for 5210 ?*/ |
---|
1433 | } |
---|
1434 | |
---|
1435 | |
---|
1436 | /****************\ |
---|
1437 | * TX power setup * |
---|
1438 | \****************/ |
---|
1439 | |
---|
1440 | /* |
---|
1441 | * Helper functions |
---|
1442 | */ |
---|
1443 | |
---|
1444 | /* |
---|
1445 | * Do linear interpolation between two given (x, y) points |
---|
1446 | */ |
---|
1447 | static s16 |
---|
1448 | ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, |
---|
1449 | s16 y_left, s16 y_right) |
---|
1450 | { |
---|
1451 | s16 ratio, result; |
---|
1452 | |
---|
1453 | /* Avoid divide by zero and skip interpolation |
---|
1454 | * if we have the same point */ |
---|
1455 | if ((x_left == x_right) || (y_left == y_right)) |
---|
1456 | return y_left; |
---|
1457 | |
---|
1458 | /* |
---|
1459 | * Since we use ints and not fps, we need to scale up in |
---|
1460 | * order to get a sane ratio value (or else we 'll eg. get |
---|
1461 | * always 1 instead of 1.25, 1.75 etc). We scale up by 100 |
---|
1462 | * to have some accuracy both for 0.5 and 0.25 steps. |
---|
1463 | */ |
---|
1464 | ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left)); |
---|
1465 | |
---|
1466 | /* Now scale down to be in range */ |
---|
1467 | result = y_left + (ratio * (target - x_left) / 100); |
---|
1468 | |
---|
1469 | return result; |
---|
1470 | } |
---|
1471 | |
---|
1472 | /* |
---|
1473 | * Find vertical boundary (min pwr) for the linear PCDAC curve. |
---|
1474 | * |
---|
1475 | * Since we have the top of the curve and we draw the line below |
---|
1476 | * until we reach 1 (1 pcdac step) we need to know which point |
---|
1477 | * (x value) that is so that we don't go below y axis and have negative |
---|
1478 | * pcdac values when creating the curve, or fill the table with zeroes. |
---|
1479 | */ |
---|
1480 | static s16 |
---|
1481 | ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, |
---|
1482 | const s16 *pwrL, const s16 *pwrR) |
---|
1483 | { |
---|
1484 | s8 tmp; |
---|
1485 | s16 min_pwrL, min_pwrR; |
---|
1486 | s16 pwr_i; |
---|
1487 | |
---|
1488 | if (pwrL[0] == pwrL[1]) |
---|
1489 | min_pwrL = pwrL[0]; |
---|
1490 | else { |
---|
1491 | pwr_i = pwrL[0]; |
---|
1492 | do { |
---|
1493 | pwr_i--; |
---|
1494 | tmp = (s8) ath5k_get_interpolated_value(pwr_i, |
---|
1495 | pwrL[0], pwrL[1], |
---|
1496 | stepL[0], stepL[1]); |
---|
1497 | } while (tmp > 1); |
---|
1498 | |
---|
1499 | min_pwrL = pwr_i; |
---|
1500 | } |
---|
1501 | |
---|
1502 | if (pwrR[0] == pwrR[1]) |
---|
1503 | min_pwrR = pwrR[0]; |
---|
1504 | else { |
---|
1505 | pwr_i = pwrR[0]; |
---|
1506 | do { |
---|
1507 | pwr_i--; |
---|
1508 | tmp = (s8) ath5k_get_interpolated_value(pwr_i, |
---|
1509 | pwrR[0], pwrR[1], |
---|
1510 | stepR[0], stepR[1]); |
---|
1511 | } while (tmp > 1); |
---|
1512 | |
---|
1513 | min_pwrR = pwr_i; |
---|
1514 | } |
---|
1515 | |
---|
1516 | /* Keep the right boundary so that it works for both curves */ |
---|
1517 | return max(min_pwrL, min_pwrR); |
---|
1518 | } |
---|
1519 | |
---|
1520 | /* |
---|
1521 | * Interpolate (pwr,vpd) points to create a Power to PDADC or a |
---|
1522 | * Power to PCDAC curve. |
---|
1523 | * |
---|
1524 | * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC |
---|
1525 | * steps (offsets) on y axis. Power can go up to 31.5dB and max |
---|
1526 | * PCDAC/PDADC step for each curve is 64 but we can write more than |
---|
1527 | * one curves on hw so we can go up to 128 (which is the max step we |
---|
1528 | * can write on the final table). |
---|
1529 | * |
---|
1530 | * We write y values (PCDAC/PDADC steps) on hw. |
---|
1531 | */ |
---|
1532 | static void |
---|
1533 | ath5k_create_power_curve(s16 pmin, s16 pmax, |
---|
1534 | const s16 *pwr, const u8 *vpd, |
---|
1535 | u8 num_points, |
---|
1536 | u8 *vpd_table, u8 type) |
---|
1537 | { |
---|
1538 | u8 idx[2] = { 0, 1 }; |
---|
1539 | s16 pwr_i = 2*pmin; |
---|
1540 | int i; |
---|
1541 | |
---|
1542 | if (num_points < 2) |
---|
1543 | return; |
---|
1544 | |
---|
1545 | /* We want the whole line, so adjust boundaries |
---|
1546 | * to cover the entire power range. Note that |
---|
1547 | * power values are already 0.25dB so no need |
---|
1548 | * to multiply pwr_i by 2 */ |
---|
1549 | if (type == AR5K_PWRTABLE_LINEAR_PCDAC) { |
---|
1550 | pwr_i = pmin; |
---|
1551 | pmin = 0; |
---|
1552 | pmax = 63; |
---|
1553 | } |
---|
1554 | |
---|
1555 | /* Find surrounding turning points (TPs) |
---|
1556 | * and interpolate between them */ |
---|
1557 | for (i = 0; (i <= (u16) (pmax - pmin)) && |
---|
1558 | (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { |
---|
1559 | |
---|
1560 | /* We passed the right TP, move to the next set of TPs |
---|
1561 | * if we pass the last TP, extrapolate above using the last |
---|
1562 | * two TPs for ratio */ |
---|
1563 | if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) { |
---|
1564 | idx[0]++; |
---|
1565 | idx[1]++; |
---|
1566 | } |
---|
1567 | |
---|
1568 | vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i, |
---|
1569 | pwr[idx[0]], pwr[idx[1]], |
---|
1570 | vpd[idx[0]], vpd[idx[1]]); |
---|
1571 | |
---|
1572 | /* Increase by 0.5dB |
---|
1573 | * (0.25 dB units) */ |
---|
1574 | pwr_i += 2; |
---|
1575 | } |
---|
1576 | } |
---|
1577 | |
---|
1578 | /* |
---|
1579 | * Get the surrounding per-channel power calibration piers |
---|
1580 | * for a given frequency so that we can interpolate between |
---|
1581 | * them and come up with an apropriate dataset for our current |
---|
1582 | * channel. |
---|
1583 | */ |
---|
1584 | static void |
---|
1585 | ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, |
---|
1586 | struct net80211_channel *channel, |
---|
1587 | struct ath5k_chan_pcal_info **pcinfo_l, |
---|
1588 | struct ath5k_chan_pcal_info **pcinfo_r) |
---|
1589 | { |
---|
1590 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
---|
1591 | struct ath5k_chan_pcal_info *pcinfo; |
---|
1592 | u8 idx_l, idx_r; |
---|
1593 | u8 mode, max, i; |
---|
1594 | u32 target = channel->center_freq; |
---|
1595 | |
---|
1596 | idx_l = 0; |
---|
1597 | idx_r = 0; |
---|
1598 | |
---|
1599 | if (!(channel->hw_value & CHANNEL_OFDM)) { |
---|
1600 | pcinfo = ee->ee_pwr_cal_b; |
---|
1601 | mode = AR5K_EEPROM_MODE_11B; |
---|
1602 | } else if (channel->hw_value & CHANNEL_2GHZ) { |
---|
1603 | pcinfo = ee->ee_pwr_cal_g; |
---|
1604 | mode = AR5K_EEPROM_MODE_11G; |
---|
1605 | } else { |
---|
1606 | pcinfo = ee->ee_pwr_cal_a; |
---|
1607 | mode = AR5K_EEPROM_MODE_11A; |
---|
1608 | } |
---|
1609 | max = ee->ee_n_piers[mode] - 1; |
---|
1610 | |
---|
1611 | /* Frequency is below our calibrated |
---|
1612 | * range. Use the lowest power curve |
---|
1613 | * we have */ |
---|
1614 | if (target < pcinfo[0].freq) { |
---|
1615 | idx_l = idx_r = 0; |
---|
1616 | goto done; |
---|
1617 | } |
---|
1618 | |
---|
1619 | /* Frequency is above our calibrated |
---|
1620 | * range. Use the highest power curve |
---|
1621 | * we have */ |
---|
1622 | if (target > pcinfo[max].freq) { |
---|
1623 | idx_l = idx_r = max; |
---|
1624 | goto done; |
---|
1625 | } |
---|
1626 | |
---|
1627 | /* Frequency is inside our calibrated |
---|
1628 | * channel range. Pick the surrounding |
---|
1629 | * calibration piers so that we can |
---|
1630 | * interpolate */ |
---|
1631 | for (i = 0; i <= max; i++) { |
---|
1632 | |
---|
1633 | /* Frequency matches one of our calibration |
---|
1634 | * piers, no need to interpolate, just use |
---|
1635 | * that calibration pier */ |
---|
1636 | if (pcinfo[i].freq == target) { |
---|
1637 | idx_l = idx_r = i; |
---|
1638 | goto done; |
---|
1639 | } |
---|
1640 | |
---|
1641 | /* We found a calibration pier that's above |
---|
1642 | * frequency, use this pier and the previous |
---|
1643 | * one to interpolate */ |
---|
1644 | if (target < pcinfo[i].freq) { |
---|
1645 | idx_r = i; |
---|
1646 | idx_l = idx_r - 1; |
---|
1647 | goto done; |
---|
1648 | } |
---|
1649 | } |
---|
1650 | |
---|
1651 | done: |
---|
1652 | *pcinfo_l = &pcinfo[idx_l]; |
---|
1653 | *pcinfo_r = &pcinfo[idx_r]; |
---|
1654 | |
---|
1655 | return; |
---|
1656 | } |
---|
1657 | |
---|
1658 | /* |
---|
1659 | * Get the surrounding per-rate power calibration data |
---|
1660 | * for a given frequency and interpolate between power |
---|
1661 | * values to set max target power supported by hw for |
---|
1662 | * each rate. |
---|
1663 | */ |
---|
1664 | static void |
---|
1665 | ath5k_get_rate_pcal_data(struct ath5k_hw *ah, |
---|
1666 | struct net80211_channel *channel, |
---|
1667 | struct ath5k_rate_pcal_info *rates) |
---|
1668 | { |
---|
1669 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
---|
1670 | struct ath5k_rate_pcal_info *rpinfo; |
---|
1671 | u8 idx_l, idx_r; |
---|
1672 | u8 mode, max, i; |
---|
1673 | u32 target = channel->center_freq; |
---|
1674 | |
---|
1675 | idx_l = 0; |
---|
1676 | idx_r = 0; |
---|
1677 | |
---|
1678 | if (!(channel->hw_value & CHANNEL_OFDM)) { |
---|
1679 | rpinfo = ee->ee_rate_tpwr_b; |
---|
1680 | mode = AR5K_EEPROM_MODE_11B; |
---|
1681 | } else if (channel->hw_value & CHANNEL_2GHZ) { |
---|
1682 | rpinfo = ee->ee_rate_tpwr_g; |
---|
1683 | mode = AR5K_EEPROM_MODE_11G; |
---|
1684 | } else { |
---|
1685 | rpinfo = ee->ee_rate_tpwr_a; |
---|
1686 | mode = AR5K_EEPROM_MODE_11A; |
---|
1687 | } |
---|
1688 | max = ee->ee_rate_target_pwr_num[mode] - 1; |
---|
1689 | |
---|
1690 | /* Get the surrounding calibration |
---|
1691 | * piers - same as above */ |
---|
1692 | if (target < rpinfo[0].freq) { |
---|
1693 | idx_l = idx_r = 0; |
---|
1694 | goto done; |
---|
1695 | } |
---|
1696 | |
---|
1697 | if (target > rpinfo[max].freq) { |
---|
1698 | idx_l = idx_r = max; |
---|
1699 | goto done; |
---|
1700 | } |
---|
1701 | |
---|
1702 | for (i = 0; i <= max; i++) { |
---|
1703 | |
---|
1704 | if (rpinfo[i].freq == target) { |
---|
1705 | idx_l = idx_r = i; |
---|
1706 | goto done; |
---|
1707 | } |
---|
1708 | |
---|
1709 | if (target < rpinfo[i].freq) { |
---|
1710 | idx_r = i; |
---|
1711 | idx_l = idx_r - 1; |
---|
1712 | goto done; |
---|
1713 | } |
---|
1714 | } |
---|
1715 | |
---|
1716 | done: |
---|
1717 | /* Now interpolate power value, based on the frequency */ |
---|
1718 | rates->freq = target; |
---|
1719 | |
---|
1720 | rates->target_power_6to24 = |
---|
1721 | ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, |
---|
1722 | rpinfo[idx_r].freq, |
---|
1723 | rpinfo[idx_l].target_power_6to24, |
---|
1724 | rpinfo[idx_r].target_power_6to24); |
---|
1725 | |
---|
1726 | rates->target_power_36 = |
---|
1727 | ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, |
---|
1728 | rpinfo[idx_r].freq, |
---|
1729 | rpinfo[idx_l].target_power_36, |
---|
1730 | rpinfo[idx_r].target_power_36); |
---|
1731 | |
---|
1732 | rates->target_power_48 = |
---|
1733 | ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, |
---|
1734 | rpinfo[idx_r].freq, |
---|
1735 | rpinfo[idx_l].target_power_48, |
---|
1736 | rpinfo[idx_r].target_power_48); |
---|
1737 | |
---|
1738 | rates->target_power_54 = |
---|
1739 | ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, |
---|
1740 | rpinfo[idx_r].freq, |
---|
1741 | rpinfo[idx_l].target_power_54, |
---|
1742 | rpinfo[idx_r].target_power_54); |
---|
1743 | } |
---|
1744 | |
---|
1745 | /* |
---|
1746 | * Get the max edge power for this channel if |
---|
1747 | * we have such data from EEPROM's Conformance Test |
---|
1748 | * Limits (CTL), and limit max power if needed. |
---|
1749 | * |
---|
1750 | * FIXME: Only works for world regulatory domains |
---|
1751 | */ |
---|
1752 | static void |
---|
1753 | ath5k_get_max_ctl_power(struct ath5k_hw *ah, |
---|
1754 | struct net80211_channel *channel) |
---|
1755 | { |
---|
1756 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
---|
1757 | struct ath5k_edge_power *rep = ee->ee_ctl_pwr; |
---|
1758 | u8 *ctl_val = ee->ee_ctl; |
---|
1759 | s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4; |
---|
1760 | s16 edge_pwr = 0; |
---|
1761 | u8 rep_idx; |
---|
1762 | u8 i, ctl_mode; |
---|
1763 | u8 ctl_idx = 0xFF; |
---|
1764 | u32 target = channel->center_freq; |
---|
1765 | |
---|
1766 | /* Find out a CTL for our mode that's not mapped |
---|
1767 | * on a specific reg domain. |
---|
1768 | * |
---|
1769 | * TODO: Map our current reg domain to one of the 3 available |
---|
1770 | * reg domain ids so that we can support more CTLs. */ |
---|
1771 | switch (channel->hw_value & CHANNEL_MODES) { |
---|
1772 | case CHANNEL_A: |
---|
1773 | ctl_mode = AR5K_CTL_11A | AR5K_CTL_NO_REGDOMAIN; |
---|
1774 | break; |
---|
1775 | case CHANNEL_G: |
---|
1776 | ctl_mode = AR5K_CTL_11G | AR5K_CTL_NO_REGDOMAIN; |
---|
1777 | break; |
---|
1778 | case CHANNEL_B: |
---|
1779 | ctl_mode = AR5K_CTL_11B | AR5K_CTL_NO_REGDOMAIN; |
---|
1780 | break; |
---|
1781 | case CHANNEL_T: |
---|
1782 | ctl_mode = AR5K_CTL_TURBO | AR5K_CTL_NO_REGDOMAIN; |
---|
1783 | break; |
---|
1784 | case CHANNEL_TG: |
---|
1785 | ctl_mode = AR5K_CTL_TURBOG | AR5K_CTL_NO_REGDOMAIN; |
---|
1786 | break; |
---|
1787 | case CHANNEL_XR: |
---|
1788 | /* Fall through */ |
---|
1789 | default: |
---|
1790 | return; |
---|
1791 | } |
---|
1792 | |
---|
1793 | for (i = 0; i < ee->ee_ctls; i++) { |
---|
1794 | if (ctl_val[i] == ctl_mode) { |
---|
1795 | ctl_idx = i; |
---|
1796 | break; |
---|
1797 | } |
---|
1798 | } |
---|
1799 | |
---|
1800 | /* If we have a CTL dataset available grab it and find the |
---|
1801 | * edge power for our frequency */ |
---|
1802 | if (ctl_idx == 0xFF) |
---|
1803 | return; |
---|
1804 | |
---|
1805 | /* Edge powers are sorted by frequency from lower |
---|
1806 | * to higher. Each CTL corresponds to 8 edge power |
---|
1807 | * measurements. */ |
---|
1808 | rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES; |
---|
1809 | |
---|
1810 | /* Don't do boundaries check because we |
---|
1811 | * might have more that one bands defined |
---|
1812 | * for this mode */ |
---|
1813 | |
---|
1814 | /* Get the edge power that's closer to our |
---|
1815 | * frequency */ |
---|
1816 | for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) { |
---|
1817 | rep_idx += i; |
---|
1818 | if (target <= rep[rep_idx].freq) |
---|
1819 | edge_pwr = (s16) rep[rep_idx].edge; |
---|
1820 | } |
---|
1821 | |
---|
1822 | if (edge_pwr) { |
---|
1823 | ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr); |
---|
1824 | } |
---|
1825 | } |
---|
1826 | |
---|
1827 | |
---|
1828 | /* |
---|
1829 | * Power to PCDAC table functions |
---|
1830 | */ |
---|
1831 | |
---|
1832 | /* |
---|
1833 | * Fill Power to PCDAC table on RF5111 |
---|
1834 | * |
---|
1835 | * No further processing is needed for RF5111, the only thing we have to |
---|
1836 | * do is fill the values below and above calibration range since eeprom data |
---|
1837 | * may not cover the entire PCDAC table. |
---|
1838 | */ |
---|
1839 | static void |
---|
1840 | ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min, |
---|
1841 | s16 *table_max) |
---|
1842 | { |
---|
1843 | u8 *pcdac_out = ah->ah_txpower.txp_pd_table; |
---|
1844 | u8 *pcdac_tmp = ah->ah_txpower.tmpL[0]; |
---|
1845 | u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i; |
---|
1846 | s16 min_pwr, max_pwr; |
---|
1847 | |
---|
1848 | /* Get table boundaries */ |
---|
1849 | min_pwr = table_min[0]; |
---|
1850 | pcdac_0 = pcdac_tmp[0]; |
---|
1851 | |
---|
1852 | max_pwr = table_max[0]; |
---|
1853 | pcdac_n = pcdac_tmp[table_max[0] - table_min[0]]; |
---|
1854 | |
---|
1855 | /* Extrapolate below minimum using pcdac_0 */ |
---|
1856 | pcdac_i = 0; |
---|
1857 | for (i = 0; i < min_pwr; i++) |
---|
1858 | pcdac_out[pcdac_i++] = pcdac_0; |
---|
1859 | |
---|
1860 | /* Copy values from pcdac_tmp */ |
---|
1861 | pwr_idx = min_pwr; |
---|
1862 | for (i = 0 ; pwr_idx <= max_pwr && |
---|
1863 | pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) { |
---|
1864 | pcdac_out[pcdac_i++] = pcdac_tmp[i]; |
---|
1865 | pwr_idx++; |
---|
1866 | } |
---|
1867 | |
---|
1868 | /* Extrapolate above maximum */ |
---|
1869 | while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE) |
---|
1870 | pcdac_out[pcdac_i++] = pcdac_n; |
---|
1871 | |
---|
1872 | } |
---|
1873 | |
---|
1874 | /* |
---|
1875 | * Combine available XPD Curves and fill Linear Power to PCDAC table |
---|
1876 | * on RF5112 |
---|
1877 | * |
---|
1878 | * RFX112 can have up to 2 curves (one for low txpower range and one for |
---|
1879 | * higher txpower range). We need to put them both on pcdac_out and place |
---|
1880 | * them in the correct location. In case we only have one curve available |
---|
1881 | * just fit it on pcdac_out (it's supposed to cover the entire range of |
---|
1882 | * available pwr levels since it's always the higher power curve). Extrapolate |
---|
1883 | * below and above final table if needed. |
---|
1884 | */ |
---|
1885 | static void |
---|
1886 | ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min, |
---|
1887 | s16 *table_max, u8 pdcurves) |
---|
1888 | { |
---|
1889 | u8 *pcdac_out = ah->ah_txpower.txp_pd_table; |
---|
1890 | u8 *pcdac_low_pwr; |
---|
1891 | u8 *pcdac_high_pwr; |
---|
1892 | u8 *pcdac_tmp; |
---|
1893 | u8 pwr; |
---|
1894 | s16 max_pwr_idx; |
---|
1895 | s16 min_pwr_idx; |
---|
1896 | s16 mid_pwr_idx = 0; |
---|
1897 | /* Edge flag turs on the 7nth bit on the PCDAC |
---|
1898 | * to delcare the higher power curve (force values |
---|
1899 | * to be greater than 64). If we only have one curve |
---|
1900 | * we don't need to set this, if we have 2 curves and |
---|
1901 | * fill the table backwards this can also be used to |
---|
1902 | * switch from higher power curve to lower power curve */ |
---|
1903 | u8 edge_flag; |
---|
1904 | int i; |
---|
1905 | |
---|
1906 | /* When we have only one curve available |
---|
1907 | * that's the higher power curve. If we have |
---|
1908 | * two curves the first is the high power curve |
---|
1909 | * and the next is the low power curve. */ |
---|
1910 | if (pdcurves > 1) { |
---|
1911 | pcdac_low_pwr = ah->ah_txpower.tmpL[1]; |
---|
1912 | pcdac_high_pwr = ah->ah_txpower.tmpL[0]; |
---|
1913 | mid_pwr_idx = table_max[1] - table_min[1] - 1; |
---|
1914 | max_pwr_idx = (table_max[0] - table_min[0]) / 2; |
---|
1915 | |
---|
1916 | /* If table size goes beyond 31.5dB, keep the |
---|
1917 | * upper 31.5dB range when setting tx power. |
---|
1918 | * Note: 126 = 31.5 dB in quarter dB steps */ |
---|
1919 | if (table_max[0] - table_min[1] > 126) |
---|
1920 | min_pwr_idx = table_max[0] - 126; |
---|
1921 | else |
---|
1922 | min_pwr_idx = table_min[1]; |
---|
1923 | |
---|
1924 | /* Since we fill table backwards |
---|
1925 | * start from high power curve */ |
---|
1926 | pcdac_tmp = pcdac_high_pwr; |
---|
1927 | |
---|
1928 | edge_flag = 0x40; |
---|
1929 | } else { |
---|
1930 | pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */ |
---|
1931 | pcdac_high_pwr = ah->ah_txpower.tmpL[0]; |
---|
1932 | min_pwr_idx = table_min[0]; |
---|
1933 | max_pwr_idx = (table_max[0] - table_min[0]) / 2; |
---|
1934 | pcdac_tmp = pcdac_high_pwr; |
---|
1935 | edge_flag = 0; |
---|
1936 | } |
---|
1937 | |
---|
1938 | /* This is used when setting tx power*/ |
---|
1939 | ah->ah_txpower.txp_min_idx = min_pwr_idx/2; |
---|
1940 | |
---|
1941 | /* Fill Power to PCDAC table backwards */ |
---|
1942 | pwr = max_pwr_idx; |
---|
1943 | for (i = 63; i >= 0; i--) { |
---|
1944 | /* Entering lower power range, reset |
---|
1945 | * edge flag and set pcdac_tmp to lower |
---|
1946 | * power curve.*/ |
---|
1947 | if (edge_flag == 0x40 && |
---|
1948 | (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) { |
---|
1949 | edge_flag = 0x00; |
---|
1950 | pcdac_tmp = pcdac_low_pwr; |
---|
1951 | pwr = mid_pwr_idx/2; |
---|
1952 | } |
---|
1953 | |
---|
1954 | /* Don't go below 1, extrapolate below if we have |
---|
1955 | * already swithced to the lower power curve -or |
---|
1956 | * we only have one curve and edge_flag is zero |
---|
1957 | * anyway */ |
---|
1958 | if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) { |
---|
1959 | while (i >= 0) { |
---|
1960 | pcdac_out[i] = pcdac_out[i + 1]; |
---|
1961 | i--; |
---|
1962 | } |
---|
1963 | break; |
---|
1964 | } |
---|
1965 | |
---|
1966 | pcdac_out[i] = pcdac_tmp[pwr] | edge_flag; |
---|
1967 | |
---|
1968 | /* Extrapolate above if pcdac is greater than |
---|
1969 | * 126 -this can happen because we OR pcdac_out |
---|
1970 | * value with edge_flag on high power curve */ |
---|
1971 | if (pcdac_out[i] > 126) |
---|
1972 | pcdac_out[i] = 126; |
---|
1973 | |
---|
1974 | /* Decrease by a 0.5dB step */ |
---|
1975 | pwr--; |
---|
1976 | } |
---|
1977 | } |
---|
1978 | |
---|
1979 | /* Write PCDAC values on hw */ |
---|
1980 | static void |
---|
1981 | ath5k_setup_pcdac_table(struct ath5k_hw *ah) |
---|
1982 | { |
---|
1983 | u8 *pcdac_out = ah->ah_txpower.txp_pd_table; |
---|
1984 | int i; |
---|
1985 | |
---|
1986 | /* |
---|
1987 | * Write TX power values |
---|
1988 | */ |
---|
1989 | for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { |
---|
1990 | ath5k_hw_reg_write(ah, |
---|
1991 | (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) | |
---|
1992 | (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16), |
---|
1993 | AR5K_PHY_PCDAC_TXPOWER(i)); |
---|
1994 | } |
---|
1995 | } |
---|
1996 | |
---|
1997 | |
---|
1998 | /* |
---|
1999 | * Power to PDADC table functions |
---|
2000 | */ |
---|
2001 | |
---|
2002 | /* |
---|
2003 | * Set the gain boundaries and create final Power to PDADC table |
---|
2004 | * |
---|
2005 | * We can have up to 4 pd curves, we need to do a simmilar process |
---|
2006 | * as we do for RF5112. This time we don't have an edge_flag but we |
---|
2007 | * set the gain boundaries on a separate register. |
---|
2008 | */ |
---|
2009 | static void |
---|
2010 | ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, |
---|
2011 | s16 *pwr_min, s16 *pwr_max, u8 pdcurves) |
---|
2012 | { |
---|
2013 | u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS]; |
---|
2014 | u8 *pdadc_out = ah->ah_txpower.txp_pd_table; |
---|
2015 | u8 *pdadc_tmp; |
---|
2016 | s16 pdadc_0; |
---|
2017 | u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size; |
---|
2018 | u8 pd_gain_overlap; |
---|
2019 | |
---|
2020 | /* Note: Register value is initialized on initvals |
---|
2021 | * there is no feedback from hw. |
---|
2022 | * XXX: What about pd_gain_overlap from EEPROM ? */ |
---|
2023 | pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) & |
---|
2024 | AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP; |
---|
2025 | |
---|
2026 | /* Create final PDADC table */ |
---|
2027 | for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) { |
---|
2028 | pdadc_tmp = ah->ah_txpower.tmpL[pdg]; |
---|
2029 | |
---|
2030 | if (pdg == pdcurves - 1) |
---|
2031 | /* 2 dB boundary stretch for last |
---|
2032 | * (higher power) curve */ |
---|
2033 | gain_boundaries[pdg] = pwr_max[pdg] + 4; |
---|
2034 | else |
---|
2035 | /* Set gain boundary in the middle |
---|
2036 | * between this curve and the next one */ |
---|
2037 | gain_boundaries[pdg] = |
---|
2038 | (pwr_max[pdg] + pwr_min[pdg + 1]) / 2; |
---|
2039 | |
---|
2040 | /* Sanity check in case our 2 db stretch got out of |
---|
2041 | * range. */ |
---|
2042 | if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER) |
---|
2043 | gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER; |
---|
2044 | |
---|
2045 | /* For the first curve (lower power) |
---|
2046 | * start from 0 dB */ |
---|
2047 | if (pdg == 0) |
---|
2048 | pdadc_0 = 0; |
---|
2049 | else |
---|
2050 | /* For the other curves use the gain overlap */ |
---|
2051 | pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) - |
---|
2052 | pd_gain_overlap; |
---|
2053 | |
---|
2054 | /* Force each power step to be at least 0.5 dB */ |
---|
2055 | if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1) |
---|
2056 | pwr_step = pdadc_tmp[1] - pdadc_tmp[0]; |
---|
2057 | else |
---|
2058 | pwr_step = 1; |
---|
2059 | |
---|
2060 | /* If pdadc_0 is negative, we need to extrapolate |
---|
2061 | * below this pdgain by a number of pwr_steps */ |
---|
2062 | while ((pdadc_0 < 0) && (pdadc_i < 128)) { |
---|
2063 | s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step; |
---|
2064 | pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp; |
---|
2065 | pdadc_0++; |
---|
2066 | } |
---|
2067 | |
---|
2068 | /* Set last pwr level, using gain boundaries */ |
---|
2069 | pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg]; |
---|
2070 | /* Limit it to be inside pwr range */ |
---|
2071 | table_size = pwr_max[pdg] - pwr_min[pdg]; |
---|
2072 | max_idx = (pdadc_n < table_size) ? pdadc_n : table_size; |
---|
2073 | |
---|
2074 | /* Fill pdadc_out table */ |
---|
2075 | while (pdadc_0 < max_idx) |
---|
2076 | pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++]; |
---|
2077 | |
---|
2078 | /* Need to extrapolate above this pdgain? */ |
---|
2079 | if (pdadc_n <= max_idx) |
---|
2080 | continue; |
---|
2081 | |
---|
2082 | /* Force each power step to be at least 0.5 dB */ |
---|
2083 | if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1) |
---|
2084 | pwr_step = pdadc_tmp[table_size - 1] - |
---|
2085 | pdadc_tmp[table_size - 2]; |
---|
2086 | else |
---|
2087 | pwr_step = 1; |
---|
2088 | |
---|
2089 | /* Extrapolate above */ |
---|
2090 | while ((pdadc_0 < (s16) pdadc_n) && |
---|
2091 | (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) { |
---|
2092 | s16 tmp = pdadc_tmp[table_size - 1] + |
---|
2093 | (pdadc_0 - max_idx) * pwr_step; |
---|
2094 | pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp; |
---|
2095 | pdadc_0++; |
---|
2096 | } |
---|
2097 | } |
---|
2098 | |
---|
2099 | while (pdg < AR5K_EEPROM_N_PD_GAINS) { |
---|
2100 | gain_boundaries[pdg] = gain_boundaries[pdg - 1]; |
---|
2101 | pdg++; |
---|
2102 | } |
---|
2103 | |
---|
2104 | while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) { |
---|
2105 | pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1]; |
---|
2106 | pdadc_i++; |
---|
2107 | } |
---|
2108 | |
---|
2109 | /* Set gain boundaries */ |
---|
2110 | ath5k_hw_reg_write(ah, |
---|
2111 | AR5K_REG_SM(pd_gain_overlap, |
---|
2112 | AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) | |
---|
2113 | AR5K_REG_SM(gain_boundaries[0], |
---|
2114 | AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) | |
---|
2115 | AR5K_REG_SM(gain_boundaries[1], |
---|
2116 | AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) | |
---|
2117 | AR5K_REG_SM(gain_boundaries[2], |
---|
2118 | AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) | |
---|
2119 | AR5K_REG_SM(gain_boundaries[3], |
---|
2120 | AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4), |
---|
2121 | AR5K_PHY_TPC_RG5); |
---|
2122 | |
---|
2123 | /* Used for setting rate power table */ |
---|
2124 | ah->ah_txpower.txp_min_idx = pwr_min[0]; |
---|
2125 | |
---|
2126 | } |
---|
2127 | |
---|
2128 | /* Write PDADC values on hw */ |
---|
2129 | static void |
---|
2130 | ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah, |
---|
2131 | u8 pdcurves, u8 *pdg_to_idx) |
---|
2132 | { |
---|
2133 | u8 *pdadc_out = ah->ah_txpower.txp_pd_table; |
---|
2134 | u32 reg; |
---|
2135 | u8 i; |
---|
2136 | |
---|
2137 | /* Select the right pdgain curves */ |
---|
2138 | |
---|
2139 | /* Clear current settings */ |
---|
2140 | reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1); |
---|
2141 | reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 | |
---|
2142 | AR5K_PHY_TPC_RG1_PDGAIN_2 | |
---|
2143 | AR5K_PHY_TPC_RG1_PDGAIN_3 | |
---|
2144 | AR5K_PHY_TPC_RG1_NUM_PD_GAIN); |
---|
2145 | |
---|
2146 | /* |
---|
2147 | * Use pd_gains curve from eeprom |
---|
2148 | * |
---|
2149 | * This overrides the default setting from initvals |
---|
2150 | * in case some vendors (e.g. Zcomax) don't use the default |
---|
2151 | * curves. If we don't honor their settings we 'll get a |
---|
2152 | * 5dB (1 * gain overlap ?) drop. |
---|
2153 | */ |
---|
2154 | reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN); |
---|
2155 | |
---|
2156 | switch (pdcurves) { |
---|
2157 | case 3: |
---|
2158 | reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3); |
---|
2159 | /* Fall through */ |
---|
2160 | case 2: |
---|
2161 | reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2); |
---|
2162 | /* Fall through */ |
---|
2163 | case 1: |
---|
2164 | reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1); |
---|
2165 | break; |
---|
2166 | } |
---|
2167 | ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1); |
---|
2168 | |
---|
2169 | /* |
---|
2170 | * Write TX power values |
---|
2171 | */ |
---|
2172 | for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { |
---|
2173 | ath5k_hw_reg_write(ah, |
---|
2174 | ((pdadc_out[4*i + 0] & 0xff) << 0) | |
---|
2175 | ((pdadc_out[4*i + 1] & 0xff) << 8) | |
---|
2176 | ((pdadc_out[4*i + 2] & 0xff) << 16) | |
---|
2177 | ((pdadc_out[4*i + 3] & 0xff) << 24), |
---|
2178 | AR5K_PHY_PDADC_TXPOWER(i)); |
---|
2179 | } |
---|
2180 | } |
---|
2181 | |
---|
2182 | |
---|
2183 | /* |
---|
2184 | * Common code for PCDAC/PDADC tables |
---|
2185 | */ |
---|
2186 | |
---|
2187 | /* |
---|
2188 | * This is the main function that uses all of the above |
---|
2189 | * to set PCDAC/PDADC table on hw for the current channel. |
---|
2190 | * This table is used for tx power calibration on the basband, |
---|
2191 | * without it we get weird tx power levels and in some cases |
---|
2192 | * distorted spectral mask |
---|
2193 | */ |
---|
2194 | static int |
---|
2195 | ath5k_setup_channel_powertable(struct ath5k_hw *ah, |
---|
2196 | struct net80211_channel *channel, |
---|
2197 | u8 ee_mode, u8 type) |
---|
2198 | { |
---|
2199 | struct ath5k_pdgain_info *pdg_L, *pdg_R; |
---|
2200 | struct ath5k_chan_pcal_info *pcinfo_L; |
---|
2201 | struct ath5k_chan_pcal_info *pcinfo_R; |
---|
2202 | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; |
---|
2203 | u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; |
---|
2204 | s16 table_min[AR5K_EEPROM_N_PD_GAINS]; |
---|
2205 | s16 table_max[AR5K_EEPROM_N_PD_GAINS]; |
---|
2206 | u8 *tmpL; |
---|
2207 | u8 *tmpR; |
---|
2208 | u32 target = channel->center_freq; |
---|
2209 | int pdg, i; |
---|
2210 | |
---|
2211 | /* Get surounding freq piers for this channel */ |
---|
2212 | ath5k_get_chan_pcal_surrounding_piers(ah, channel, |
---|
2213 | &pcinfo_L, |
---|
2214 | &pcinfo_R); |
---|
2215 | |
---|
2216 | /* Loop over pd gain curves on |
---|
2217 | * surounding freq piers by index */ |
---|
2218 | for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) { |
---|
2219 | |
---|
2220 | /* Fill curves in reverse order |
---|
2221 | * from lower power (max gain) |
---|
2222 | * to higher power. Use curve -> idx |
---|
2223 | * backmaping we did on eeprom init */ |
---|
2224 | u8 idx = pdg_curve_to_idx[pdg]; |
---|
2225 | |
---|
2226 | /* Grab the needed curves by index */ |
---|
2227 | pdg_L = &pcinfo_L->pd_curves[idx]; |
---|
2228 | pdg_R = &pcinfo_R->pd_curves[idx]; |
---|
2229 | |
---|
2230 | /* Initialize the temp tables */ |
---|
2231 | tmpL = ah->ah_txpower.tmpL[pdg]; |
---|
2232 | tmpR = ah->ah_txpower.tmpR[pdg]; |
---|
2233 | |
---|
2234 | /* Set curve's x boundaries and create |
---|
2235 | * curves so that they cover the same |
---|
2236 | * range (if we don't do that one table |
---|
2237 | * will have values on some range and the |
---|
2238 | * other one won't have any so interpolation |
---|
2239 | * will fail) */ |
---|
2240 | table_min[pdg] = min(pdg_L->pd_pwr[0], |
---|
2241 | pdg_R->pd_pwr[0]) / 2; |
---|
2242 | |
---|
2243 | table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1], |
---|
2244 | pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2; |
---|
2245 | |
---|
2246 | /* Now create the curves on surrounding channels |
---|
2247 | * and interpolate if needed to get the final |
---|
2248 | * curve for this gain on this channel */ |
---|
2249 | switch (type) { |
---|
2250 | case AR5K_PWRTABLE_LINEAR_PCDAC: |
---|
2251 | /* Override min/max so that we don't loose |
---|
2252 | * accuracy (don't divide by 2) */ |
---|
2253 | table_min[pdg] = min(pdg_L->pd_pwr[0], |
---|
2254 | pdg_R->pd_pwr[0]); |
---|
2255 | |
---|
2256 | table_max[pdg] = |
---|
2257 | max(pdg_L->pd_pwr[pdg_L->pd_points - 1], |
---|
2258 | pdg_R->pd_pwr[pdg_R->pd_points - 1]); |
---|
2259 | |
---|
2260 | /* Override minimum so that we don't get |
---|
2261 | * out of bounds while extrapolating |
---|
2262 | * below. Don't do this when we have 2 |
---|
2263 | * curves and we are on the high power curve |
---|
2264 | * because table_min is ok in this case */ |
---|
2265 | if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) { |
---|
2266 | |
---|
2267 | table_min[pdg] = |
---|
2268 | ath5k_get_linear_pcdac_min(pdg_L->pd_step, |
---|
2269 | pdg_R->pd_step, |
---|
2270 | pdg_L->pd_pwr, |
---|
2271 | pdg_R->pd_pwr); |
---|
2272 | |
---|
2273 | /* Don't go too low because we will |
---|
2274 | * miss the upper part of the curve. |
---|
2275 | * Note: 126 = 31.5dB (max power supported) |
---|
2276 | * in 0.25dB units */ |
---|
2277 | if (table_max[pdg] - table_min[pdg] > 126) |
---|
2278 | table_min[pdg] = table_max[pdg] - 126; |
---|
2279 | } |
---|
2280 | |
---|
2281 | /* Fall through */ |
---|
2282 | case AR5K_PWRTABLE_PWR_TO_PCDAC: |
---|
2283 | case AR5K_PWRTABLE_PWR_TO_PDADC: |
---|
2284 | |
---|
2285 | ath5k_create_power_curve(table_min[pdg], |
---|
2286 | table_max[pdg], |
---|
2287 | pdg_L->pd_pwr, |
---|
2288 | pdg_L->pd_step, |
---|
2289 | pdg_L->pd_points, tmpL, type); |
---|
2290 | |
---|
2291 | /* We are in a calibration |
---|
2292 | * pier, no need to interpolate |
---|
2293 | * between freq piers */ |
---|
2294 | if (pcinfo_L == pcinfo_R) |
---|
2295 | continue; |
---|
2296 | |
---|
2297 | ath5k_create_power_curve(table_min[pdg], |
---|
2298 | table_max[pdg], |
---|
2299 | pdg_R->pd_pwr, |
---|
2300 | pdg_R->pd_step, |
---|
2301 | pdg_R->pd_points, tmpR, type); |
---|
2302 | break; |
---|
2303 | default: |
---|
2304 | return -EINVAL; |
---|
2305 | } |
---|
2306 | |
---|
2307 | /* Interpolate between curves |
---|
2308 | * of surounding freq piers to |
---|
2309 | * get the final curve for this |
---|
2310 | * pd gain. Re-use tmpL for interpolation |
---|
2311 | * output */ |
---|
2312 | for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) && |
---|
2313 | (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { |
---|
2314 | tmpL[i] = (u8) ath5k_get_interpolated_value(target, |
---|
2315 | (s16) pcinfo_L->freq, |
---|
2316 | (s16) pcinfo_R->freq, |
---|
2317 | (s16) tmpL[i], |
---|
2318 | (s16) tmpR[i]); |
---|
2319 | } |
---|
2320 | } |
---|
2321 | |
---|
2322 | /* Now we have a set of curves for this |
---|
2323 | * channel on tmpL (x range is table_max - table_min |
---|
2324 | * and y values are tmpL[pdg][]) sorted in the same |
---|
2325 | * order as EEPROM (because we've used the backmaping). |
---|
2326 | * So for RF5112 it's from higher power to lower power |
---|
2327 | * and for RF2413 it's from lower power to higher power. |
---|
2328 | * For RF5111 we only have one curve. */ |
---|
2329 | |
---|
2330 | /* Fill min and max power levels for this |
---|
2331 | * channel by interpolating the values on |
---|
2332 | * surounding channels to complete the dataset */ |
---|
2333 | ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target, |
---|
2334 | (s16) pcinfo_L->freq, |
---|
2335 | (s16) pcinfo_R->freq, |
---|
2336 | pcinfo_L->min_pwr, pcinfo_R->min_pwr); |
---|
2337 | |
---|
2338 | ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target, |
---|
2339 | (s16) pcinfo_L->freq, |
---|
2340 | (s16) pcinfo_R->freq, |
---|
2341 | pcinfo_L->max_pwr, pcinfo_R->max_pwr); |
---|
2342 | |
---|
2343 | /* We are ready to go, fill PCDAC/PDADC |
---|
2344 | * table and write settings on hardware */ |
---|
2345 | switch (type) { |
---|
2346 | case AR5K_PWRTABLE_LINEAR_PCDAC: |
---|
2347 | /* For RF5112 we can have one or two curves |
---|
2348 | * and each curve covers a certain power lvl |
---|
2349 | * range so we need to do some more processing */ |
---|
2350 | ath5k_combine_linear_pcdac_curves(ah, table_min, table_max, |
---|
2351 | ee->ee_pd_gains[ee_mode]); |
---|
2352 | |
---|
2353 | /* Set txp.offset so that we can |
---|
2354 | * match max power value with max |
---|
2355 | * table index */ |
---|
2356 | ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2); |
---|
2357 | |
---|
2358 | /* Write settings on hw */ |
---|
2359 | ath5k_setup_pcdac_table(ah); |
---|
2360 | break; |
---|
2361 | case AR5K_PWRTABLE_PWR_TO_PCDAC: |
---|
2362 | /* We are done for RF5111 since it has only |
---|
2363 | * one curve, just fit the curve on the table */ |
---|
2364 | ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max); |
---|
2365 | |
---|
2366 | /* No rate powertable adjustment for RF5111 */ |
---|
2367 | ah->ah_txpower.txp_min_idx = 0; |
---|
2368 | ah->ah_txpower.txp_offset = 0; |
---|
2369 | |
---|
2370 | /* Write settings on hw */ |
---|
2371 | ath5k_setup_pcdac_table(ah); |
---|
2372 | break; |
---|
2373 | case AR5K_PWRTABLE_PWR_TO_PDADC: |
---|
2374 | /* Set PDADC boundaries and fill |
---|
2375 | * final PDADC table */ |
---|
2376 | ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max, |
---|
2377 | ee->ee_pd_gains[ee_mode]); |
---|
2378 | |
---|
2379 | /* Write settings on hw */ |
---|
2380 | ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx); |
---|
2381 | |
---|
2382 | /* Set txp.offset, note that table_min |
---|
2383 | * can be negative */ |
---|
2384 | ah->ah_txpower.txp_offset = table_min[0]; |
---|
2385 | break; |
---|
2386 | default: |
---|
2387 | return -EINVAL; |
---|
2388 | } |
---|
2389 | |
---|
2390 | return 0; |
---|
2391 | } |
---|
2392 | |
---|
2393 | |
---|
2394 | /* |
---|
2395 | * Per-rate tx power setting |
---|
2396 | * |
---|
2397 | * This is the code that sets the desired tx power (below |
---|
2398 | * maximum) on hw for each rate (we also have TPC that sets |
---|
2399 | * power per packet). We do that by providing an index on the |
---|
2400 | * PCDAC/PDADC table we set up. |
---|
2401 | */ |
---|
2402 | |
---|
2403 | /* |
---|
2404 | * Set rate power table |
---|
2405 | * |
---|
2406 | * For now we only limit txpower based on maximum tx power |
---|
2407 | * supported by hw (what's inside rate_info). We need to limit |
---|
2408 | * this even more, based on regulatory domain etc. |
---|
2409 | * |
---|
2410 | * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps) |
---|
2411 | * and is indexed as follows: |
---|
2412 | * rates[0] - rates[7] -> OFDM rates |
---|
2413 | * rates[8] - rates[14] -> CCK rates |
---|
2414 | * rates[15] -> XR rates (they all have the same power) |
---|
2415 | */ |
---|
2416 | static void |
---|
2417 | ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, |
---|
2418 | struct ath5k_rate_pcal_info *rate_info, |
---|
2419 | u8 ee_mode) |
---|
2420 | { |
---|
2421 | unsigned int i; |
---|
2422 | u16 *rates; |
---|
2423 | |
---|
2424 | /* max_pwr is power level we got from driver/user in 0.5dB |
---|
2425 | * units, switch to 0.25dB units so we can compare */ |
---|
2426 | max_pwr *= 2; |
---|
2427 | max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2; |
---|
2428 | |
---|
2429 | /* apply rate limits */ |
---|
2430 | rates = ah->ah_txpower.txp_rates_power_table; |
---|
2431 | |
---|
2432 | /* OFDM rates 6 to 24Mb/s */ |
---|
2433 | for (i = 0; i < 5; i++) |
---|
2434 | rates[i] = min(max_pwr, rate_info->target_power_6to24); |
---|
2435 | |
---|
2436 | /* Rest OFDM rates */ |
---|
2437 | rates[5] = min(rates[0], rate_info->target_power_36); |
---|
2438 | rates[6] = min(rates[0], rate_info->target_power_48); |
---|
2439 | rates[7] = min(rates[0], rate_info->target_power_54); |
---|
2440 | |
---|
2441 | /* CCK rates */ |
---|
2442 | /* 1L */ |
---|
2443 | rates[8] = min(rates[0], rate_info->target_power_6to24); |
---|
2444 | /* 2L */ |
---|
2445 | rates[9] = min(rates[0], rate_info->target_power_36); |
---|
2446 | /* 2S */ |
---|
2447 | rates[10] = min(rates[0], rate_info->target_power_36); |
---|
2448 | /* 5L */ |
---|
2449 | rates[11] = min(rates[0], rate_info->target_power_48); |
---|
2450 | /* 5S */ |
---|
2451 | rates[12] = min(rates[0], rate_info->target_power_48); |
---|
2452 | /* 11L */ |
---|
2453 | rates[13] = min(rates[0], rate_info->target_power_54); |
---|
2454 | /* 11S */ |
---|
2455 | rates[14] = min(rates[0], rate_info->target_power_54); |
---|
2456 | |
---|
2457 | /* XR rates */ |
---|
2458 | rates[15] = min(rates[0], rate_info->target_power_6to24); |
---|
2459 | |
---|
2460 | /* CCK rates have different peak to average ratio |
---|
2461 | * so we have to tweak their power so that gainf |
---|
2462 | * correction works ok. For this we use OFDM to |
---|
2463 | * CCK delta from eeprom */ |
---|
2464 | if ((ee_mode == AR5K_EEPROM_MODE_11G) && |
---|
2465 | (ah->ah_phy_revision < AR5K_SREV_PHY_5212A)) |
---|
2466 | for (i = 8; i <= 15; i++) |
---|
2467 | rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta; |
---|
2468 | |
---|
2469 | ah->ah_txpower.txp_min_pwr = rates[7]; |
---|
2470 | ah->ah_txpower.txp_max_pwr = rates[0]; |
---|
2471 | ah->ah_txpower.txp_ofdm = rates[7]; |
---|
2472 | } |
---|
2473 | |
---|
2474 | |
---|
2475 | /* |
---|
2476 | * Set transmition power |
---|
2477 | */ |
---|
2478 | int |
---|
2479 | ath5k_hw_txpower(struct ath5k_hw *ah, struct net80211_channel *channel, |
---|
2480 | u8 ee_mode, u8 txpower) |
---|
2481 | { |
---|
2482 | struct ath5k_rate_pcal_info rate_info; |
---|
2483 | u8 type; |
---|
2484 | int ret; |
---|
2485 | |
---|
2486 | if (txpower > AR5K_TUNE_MAX_TXPOWER) { |
---|
2487 | DBG("ath5k: invalid tx power %d\n", txpower); |
---|
2488 | return -EINVAL; |
---|
2489 | } |
---|
2490 | if (txpower == 0) |
---|
2491 | txpower = AR5K_TUNE_DEFAULT_TXPOWER; |
---|
2492 | |
---|
2493 | /* Reset TX power values */ |
---|
2494 | memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); |
---|
2495 | ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER; |
---|
2496 | ah->ah_txpower.txp_min_pwr = 0; |
---|
2497 | ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER; |
---|
2498 | |
---|
2499 | /* Initialize TX power table */ |
---|
2500 | switch (ah->ah_radio) { |
---|
2501 | case AR5K_RF5111: |
---|
2502 | type = AR5K_PWRTABLE_PWR_TO_PCDAC; |
---|
2503 | break; |
---|
2504 | case AR5K_RF5112: |
---|
2505 | type = AR5K_PWRTABLE_LINEAR_PCDAC; |
---|
2506 | break; |
---|
2507 | case AR5K_RF2413: |
---|
2508 | case AR5K_RF5413: |
---|
2509 | case AR5K_RF2316: |
---|
2510 | case AR5K_RF2317: |
---|
2511 | case AR5K_RF2425: |
---|
2512 | type = AR5K_PWRTABLE_PWR_TO_PDADC; |
---|
2513 | break; |
---|
2514 | default: |
---|
2515 | return -EINVAL; |
---|
2516 | } |
---|
2517 | |
---|
2518 | /* FIXME: Only on channel/mode change */ |
---|
2519 | ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type); |
---|
2520 | if (ret) |
---|
2521 | return ret; |
---|
2522 | |
---|
2523 | /* Limit max power if we have a CTL available */ |
---|
2524 | ath5k_get_max_ctl_power(ah, channel); |
---|
2525 | |
---|
2526 | /* FIXME: Tx power limit for this regdomain |
---|
2527 | * XXX: Mac80211/CRDA will do that anyway ? */ |
---|
2528 | |
---|
2529 | /* FIXME: Antenna reduction stuff */ |
---|
2530 | |
---|
2531 | /* FIXME: Limit power on turbo modes */ |
---|
2532 | |
---|
2533 | /* FIXME: TPC scale reduction */ |
---|
2534 | |
---|
2535 | /* Get surounding channels for per-rate power table |
---|
2536 | * calibration */ |
---|
2537 | ath5k_get_rate_pcal_data(ah, channel, &rate_info); |
---|
2538 | |
---|
2539 | /* Setup rate power table */ |
---|
2540 | ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode); |
---|
2541 | |
---|
2542 | /* Write rate power table on hw */ |
---|
2543 | ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) | |
---|
2544 | AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) | |
---|
2545 | AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1); |
---|
2546 | |
---|
2547 | ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) | |
---|
2548 | AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) | |
---|
2549 | AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2); |
---|
2550 | |
---|
2551 | ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) | |
---|
2552 | AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) | |
---|
2553 | AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3); |
---|
2554 | |
---|
2555 | ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) | |
---|
2556 | AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) | |
---|
2557 | AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4); |
---|
2558 | |
---|
2559 | /* FIXME: TPC support */ |
---|
2560 | if (ah->ah_txpower.txp_tpc) { |
---|
2561 | ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE | |
---|
2562 | AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); |
---|
2563 | |
---|
2564 | ath5k_hw_reg_write(ah, |
---|
2565 | AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) | |
---|
2566 | AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) | |
---|
2567 | AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP), |
---|
2568 | AR5K_TPC); |
---|
2569 | } else { |
---|
2570 | ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX | |
---|
2571 | AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); |
---|
2572 | } |
---|
2573 | |
---|
2574 | return 0; |
---|
2575 | } |
---|
2576 | |
---|
2577 | int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower) |
---|
2578 | { |
---|
2579 | struct net80211_channel *channel = ah->ah_current_channel; |
---|
2580 | |
---|
2581 | DBG2("ath5k: changing txpower to %d\n", txpower); |
---|
2582 | |
---|
2583 | return ath5k_hw_txpower(ah, channel, mode, txpower); |
---|
2584 | } |
---|
2585 | |
---|
2586 | #undef _ATH5K_PHY |
---|