1 | /* |
---|
2 | * Copyright (c) 2009 Joshua Oreman <oremanj@rwcr.net>. |
---|
3 | * |
---|
4 | * This program is free software; you can redistribute it and/or |
---|
5 | * modify it under the terms of the GNU General Public License as |
---|
6 | * published by the Free Software Foundation; either version 2 of the |
---|
7 | * License, or any later version. |
---|
8 | * |
---|
9 | * This program is distributed in the hope that it will be useful, but |
---|
10 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
12 | * General Public License for more details. |
---|
13 | * |
---|
14 | * You should have received a copy of the GNU General Public License |
---|
15 | * along with this program; if not, write to the Free Software |
---|
16 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
17 | */ |
---|
18 | |
---|
19 | FILE_LICENCE ( GPL2_OR_LATER ); |
---|
20 | |
---|
21 | #include <gpxe/net80211.h> |
---|
22 | #include <gpxe/sec80211.h> |
---|
23 | #include <gpxe/crypto.h> |
---|
24 | #include <gpxe/arc4.h> |
---|
25 | #include <gpxe/crc32.h> |
---|
26 | #include <stdlib.h> |
---|
27 | #include <string.h> |
---|
28 | #include <errno.h> |
---|
29 | |
---|
30 | /** @file |
---|
31 | * |
---|
32 | * The WEP wireless encryption method (insecure!) |
---|
33 | * |
---|
34 | * The data field in a WEP-encrypted packet contains a 3-byte |
---|
35 | * initialisation vector, one-byte Key ID field (only the bottom two |
---|
36 | * bits are ever used), encrypted data, and a 4-byte encrypted CRC of |
---|
37 | * the plaintext data, called the ICV. To decrypt it, the IV is |
---|
38 | * prepended to the shared key and the data stream (including ICV) is |
---|
39 | * run through the ARC4 stream cipher; if the ICV matches a CRC32 |
---|
40 | * calculated on the plaintext, the packet is valid. |
---|
41 | * |
---|
42 | * For efficiency and code-size reasons, this file assumes it is |
---|
43 | * running on a little-endian machine. |
---|
44 | */ |
---|
45 | |
---|
46 | /** Length of WEP initialisation vector */ |
---|
47 | #define WEP_IV_LEN 3 |
---|
48 | |
---|
49 | /** Length of WEP key ID byte */ |
---|
50 | #define WEP_KID_LEN 1 |
---|
51 | |
---|
52 | /** Length of WEP ICV checksum */ |
---|
53 | #define WEP_ICV_LEN 4 |
---|
54 | |
---|
55 | /** Maximum length of WEP key */ |
---|
56 | #define WEP_MAX_KEY 16 |
---|
57 | |
---|
58 | /** Amount of data placed before the encrypted bytes */ |
---|
59 | #define WEP_HEADER_LEN 4 |
---|
60 | |
---|
61 | /** Amount of data placed after the encrypted bytes */ |
---|
62 | #define WEP_TRAILER_LEN 4 |
---|
63 | |
---|
64 | /** Total WEP overhead bytes */ |
---|
65 | #define WEP_OVERHEAD 8 |
---|
66 | |
---|
67 | /** Context for WEP encryption and decryption */ |
---|
68 | struct wep_ctx |
---|
69 | { |
---|
70 | /** Encoded WEP key |
---|
71 | * |
---|
72 | * The actual key bytes are stored beginning at offset 3, to |
---|
73 | * leave room for easily inserting the IV before a particular |
---|
74 | * operation. |
---|
75 | */ |
---|
76 | u8 key[WEP_IV_LEN + WEP_MAX_KEY]; |
---|
77 | |
---|
78 | /** Length of WEP key (not including IV bytes) */ |
---|
79 | int keylen; |
---|
80 | |
---|
81 | /** ARC4 context */ |
---|
82 | struct arc4_ctx arc4; |
---|
83 | }; |
---|
84 | |
---|
85 | /** |
---|
86 | * Initialize WEP algorithm |
---|
87 | * |
---|
88 | * @v crypto 802.11 cryptographic algorithm |
---|
89 | * @v key WEP key to use |
---|
90 | * @v keylen Length of WEP key |
---|
91 | * @v rsc Initial receive sequence counter (unused) |
---|
92 | * @ret rc Return status code |
---|
93 | * |
---|
94 | * Standard key lengths are 5 and 13 bytes; 16-byte keys are |
---|
95 | * occasionally supported as an extension to the standard. |
---|
96 | */ |
---|
97 | static int wep_init ( struct net80211_crypto *crypto, const void *key, |
---|
98 | int keylen, const void *rsc __unused ) |
---|
99 | { |
---|
100 | struct wep_ctx *ctx = crypto->priv; |
---|
101 | |
---|
102 | ctx->keylen = ( keylen > WEP_MAX_KEY ? WEP_MAX_KEY : keylen ); |
---|
103 | memcpy ( ctx->key + WEP_IV_LEN, key, ctx->keylen ); |
---|
104 | |
---|
105 | return 0; |
---|
106 | } |
---|
107 | |
---|
108 | /** |
---|
109 | * Encrypt packet using WEP |
---|
110 | * |
---|
111 | * @v crypto 802.11 cryptographic algorithm |
---|
112 | * @v iob I/O buffer of plaintext packet |
---|
113 | * @ret eiob Newly allocated I/O buffer for encrypted packet, or NULL |
---|
114 | * |
---|
115 | * If memory allocation fails, @c NULL is returned. |
---|
116 | */ |
---|
117 | static struct io_buffer * wep_encrypt ( struct net80211_crypto *crypto, |
---|
118 | struct io_buffer *iob ) |
---|
119 | { |
---|
120 | struct wep_ctx *ctx = crypto->priv; |
---|
121 | struct io_buffer *eiob; |
---|
122 | struct ieee80211_frame *hdr; |
---|
123 | const int hdrlen = IEEE80211_TYP_FRAME_HEADER_LEN; |
---|
124 | int datalen = iob_len ( iob ) - hdrlen; |
---|
125 | int newlen = hdrlen + datalen + WEP_OVERHEAD; |
---|
126 | u32 iv, icv; |
---|
127 | |
---|
128 | eiob = alloc_iob ( newlen ); |
---|
129 | if ( ! eiob ) |
---|
130 | return NULL; |
---|
131 | |
---|
132 | memcpy ( iob_put ( eiob, hdrlen ), iob->data, hdrlen ); |
---|
133 | hdr = eiob->data; |
---|
134 | hdr->fc |= IEEE80211_FC_PROTECTED; |
---|
135 | |
---|
136 | /* Calculate IV, put it in the header (with key ID byte = 0), and |
---|
137 | set it up at the start of the encryption key. */ |
---|
138 | iv = random() & 0xffffff; /* IV in bottom 3 bytes, top byte = KID = 0 */ |
---|
139 | memcpy ( iob_put ( eiob, WEP_HEADER_LEN ), &iv, WEP_HEADER_LEN ); |
---|
140 | memcpy ( ctx->key, &iv, WEP_IV_LEN ); |
---|
141 | |
---|
142 | /* Encrypt the data using RC4 */ |
---|
143 | cipher_setkey ( &arc4_algorithm, &ctx->arc4, ctx->key, |
---|
144 | ctx->keylen + WEP_IV_LEN ); |
---|
145 | cipher_encrypt ( &arc4_algorithm, &ctx->arc4, iob->data + hdrlen, |
---|
146 | iob_put ( eiob, datalen ), datalen ); |
---|
147 | |
---|
148 | /* Add ICV */ |
---|
149 | icv = ~crc32_le ( ~0, iob->data + hdrlen, datalen ); |
---|
150 | cipher_encrypt ( &arc4_algorithm, &ctx->arc4, &icv, |
---|
151 | iob_put ( eiob, WEP_ICV_LEN ), WEP_ICV_LEN ); |
---|
152 | |
---|
153 | return eiob; |
---|
154 | } |
---|
155 | |
---|
156 | /** |
---|
157 | * Decrypt packet using WEP |
---|
158 | * |
---|
159 | * @v crypto 802.11 cryptographic algorithm |
---|
160 | * @v eiob I/O buffer of encrypted packet |
---|
161 | * @ret iob Newly allocated I/O buffer for plaintext packet, or NULL |
---|
162 | * |
---|
163 | * If a consistency check for the decryption fails (usually indicating |
---|
164 | * an invalid key), @c NULL is returned. |
---|
165 | */ |
---|
166 | static struct io_buffer * wep_decrypt ( struct net80211_crypto *crypto, |
---|
167 | struct io_buffer *eiob ) |
---|
168 | { |
---|
169 | struct wep_ctx *ctx = crypto->priv; |
---|
170 | struct io_buffer *iob; |
---|
171 | struct ieee80211_frame *hdr; |
---|
172 | const int hdrlen = IEEE80211_TYP_FRAME_HEADER_LEN; |
---|
173 | int datalen = iob_len ( eiob ) - hdrlen - WEP_OVERHEAD; |
---|
174 | int newlen = hdrlen + datalen; |
---|
175 | u32 iv, icv, crc; |
---|
176 | |
---|
177 | iob = alloc_iob ( newlen ); |
---|
178 | if ( ! iob ) |
---|
179 | return NULL; |
---|
180 | |
---|
181 | memcpy ( iob_put ( iob, hdrlen ), eiob->data, hdrlen ); |
---|
182 | hdr = iob->data; |
---|
183 | hdr->fc &= ~IEEE80211_FC_PROTECTED; |
---|
184 | |
---|
185 | /* Strip off IV and use it to initialize cryptosystem */ |
---|
186 | memcpy ( &iv, eiob->data + hdrlen, 4 ); |
---|
187 | iv &= 0xffffff; /* ignore key ID byte */ |
---|
188 | memcpy ( ctx->key, &iv, WEP_IV_LEN ); |
---|
189 | |
---|
190 | /* Decrypt the data using RC4 */ |
---|
191 | cipher_setkey ( &arc4_algorithm, &ctx->arc4, ctx->key, |
---|
192 | ctx->keylen + WEP_IV_LEN ); |
---|
193 | cipher_decrypt ( &arc4_algorithm, &ctx->arc4, eiob->data + hdrlen + |
---|
194 | WEP_HEADER_LEN, iob_put ( iob, datalen ), datalen ); |
---|
195 | |
---|
196 | /* Strip off ICV and verify it */ |
---|
197 | cipher_decrypt ( &arc4_algorithm, &ctx->arc4, eiob->data + hdrlen + |
---|
198 | WEP_HEADER_LEN + datalen, &icv, WEP_ICV_LEN ); |
---|
199 | crc = ~crc32_le ( ~0, iob->data + hdrlen, datalen ); |
---|
200 | if ( crc != icv ) { |
---|
201 | DBGC ( crypto, "WEP %p CRC mismatch: expect %08x, get %08x\n", |
---|
202 | crypto, icv, crc ); |
---|
203 | free_iob ( iob ); |
---|
204 | return NULL; |
---|
205 | } |
---|
206 | return iob; |
---|
207 | } |
---|
208 | |
---|
209 | /** WEP cryptosystem for 802.11 */ |
---|
210 | struct net80211_crypto wep_crypto __net80211_crypto = { |
---|
211 | .algorithm = NET80211_CRYPT_WEP, |
---|
212 | .init = wep_init, |
---|
213 | .encrypt = wep_encrypt, |
---|
214 | .decrypt = wep_decrypt, |
---|
215 | .priv_len = sizeof ( struct wep_ctx ), |
---|
216 | }; |
---|
217 | |
---|
218 | /** |
---|
219 | * Initialize trivial 802.11 security handshaker |
---|
220 | * |
---|
221 | * @v dev 802.11 device |
---|
222 | * @v ctx Security handshaker |
---|
223 | * |
---|
224 | * This simply fetches a WEP key from netX/key, and if it exists, |
---|
225 | * installs WEP cryptography on the 802.11 device. No real handshaking |
---|
226 | * is performed. |
---|
227 | */ |
---|
228 | static int trivial_init ( struct net80211_device *dev ) |
---|
229 | { |
---|
230 | u8 key[WEP_MAX_KEY]; /* support up to 128-bit keys */ |
---|
231 | int len; |
---|
232 | int rc; |
---|
233 | |
---|
234 | if ( dev->associating && |
---|
235 | dev->associating->crypto == NET80211_CRYPT_NONE ) |
---|
236 | return 0; /* no crypto? OK. */ |
---|
237 | |
---|
238 | len = fetch_setting ( netdev_settings ( dev->netdev ), |
---|
239 | &net80211_key_setting, key, WEP_MAX_KEY ); |
---|
240 | |
---|
241 | if ( len <= 0 ) { |
---|
242 | DBGC ( dev, "802.11 %p cannot do WEP without a key\n", dev ); |
---|
243 | return -EACCES; |
---|
244 | } |
---|
245 | |
---|
246 | /* Full 128-bit keys are a nonstandard extension, but they're |
---|
247 | utterly trivial to support, so we do. */ |
---|
248 | if ( len != 5 && len != 13 && len != 16 ) { |
---|
249 | DBGC ( dev, "802.11 %p invalid WEP key length %d\n", |
---|
250 | dev, len ); |
---|
251 | return -EINVAL; |
---|
252 | } |
---|
253 | |
---|
254 | DBGC ( dev, "802.11 %p installing %d-bit WEP\n", dev, len * 8 ); |
---|
255 | |
---|
256 | rc = sec80211_install ( &dev->crypto, NET80211_CRYPT_WEP, key, len, |
---|
257 | NULL ); |
---|
258 | if ( rc < 0 ) |
---|
259 | return rc; |
---|
260 | |
---|
261 | return 0; |
---|
262 | } |
---|
263 | |
---|
264 | /** |
---|
265 | * Check for key change on trivial 802.11 security handshaker |
---|
266 | * |
---|
267 | * @v dev 802.11 device |
---|
268 | * @v ctx Security handshaker |
---|
269 | */ |
---|
270 | static int trivial_change_key ( struct net80211_device *dev ) |
---|
271 | { |
---|
272 | u8 key[WEP_MAX_KEY]; |
---|
273 | int len; |
---|
274 | int change = 0; |
---|
275 | |
---|
276 | /* If going from WEP to clear, or something else to WEP, reassociate. */ |
---|
277 | if ( ! dev->crypto || ( dev->crypto->init != wep_init ) ) |
---|
278 | change ^= 1; |
---|
279 | |
---|
280 | len = fetch_setting ( netdev_settings ( dev->netdev ), |
---|
281 | &net80211_key_setting, key, WEP_MAX_KEY ); |
---|
282 | if ( len <= 0 ) |
---|
283 | change ^= 1; |
---|
284 | |
---|
285 | /* Changing crypto type => return nonzero to reassociate. */ |
---|
286 | if ( change ) |
---|
287 | return -EINVAL; |
---|
288 | |
---|
289 | /* Going from no crypto to still no crypto => nothing to do. */ |
---|
290 | if ( len <= 0 ) |
---|
291 | return 0; |
---|
292 | |
---|
293 | /* Otherwise, reinitialise WEP with new key. */ |
---|
294 | return wep_init ( dev->crypto, key, len, NULL ); |
---|
295 | } |
---|
296 | |
---|
297 | /** Trivial 802.11 security handshaker */ |
---|
298 | struct net80211_handshaker trivial_handshaker __net80211_handshaker = { |
---|
299 | .protocol = NET80211_SECPROT_NONE, |
---|
300 | .init = trivial_init, |
---|
301 | .change_key = trivial_change_key, |
---|
302 | .priv_len = 0, |
---|
303 | }; |
---|