[e16e8f2] | 1 | #define DEBG(x) |
---|
| 2 | #define DEBG1(x) |
---|
| 3 | /* inflate.c -- Not copyrighted 1992 by Mark Adler |
---|
| 4 | version c10p1, 10 January 1993 */ |
---|
| 5 | |
---|
| 6 | /* |
---|
| 7 | * Adapted for booting Linux by Hannu Savolainen 1993 |
---|
| 8 | * based on gzip-1.0.3 |
---|
| 9 | * |
---|
| 10 | * Nicolas Pitre <nico@cam.org>, 1999/04/14 : |
---|
| 11 | * Little mods for all variable to reside either into rodata or bss segments |
---|
| 12 | * by marking constant variables with 'const' and initializing all the others |
---|
| 13 | * at run-time only. This allows for the kernel uncompressor to run |
---|
| 14 | * directly from Flash or ROM memory on embedded systems. |
---|
| 15 | * |
---|
| 16 | * Adapted for MEMDISK by H. Peter Anvin, April 2003 |
---|
| 17 | */ |
---|
| 18 | |
---|
| 19 | /* |
---|
| 20 | Inflate deflated (PKZIP's method 8 compressed) data. The compression |
---|
| 21 | method searches for as much of the current string of bytes (up to a |
---|
| 22 | length of 258) in the previous 32 K bytes. If it doesn't find any |
---|
| 23 | matches (of at least length 3), it codes the next byte. Otherwise, it |
---|
| 24 | codes the length of the matched string and its distance backwards from |
---|
| 25 | the current position. There is a single Huffman code that codes both |
---|
| 26 | single bytes (called "literals") and match lengths. A second Huffman |
---|
| 27 | code codes the distance information, which follows a length code. Each |
---|
| 28 | length or distance code actually represents a base value and a number |
---|
| 29 | of "extra" (sometimes zero) bits to get to add to the base value. At |
---|
| 30 | the end of each deflated block is a special end-of-block (EOB) literal/ |
---|
| 31 | length code. The decoding process is basically: get a literal/length |
---|
| 32 | code; if EOB then done; if a literal, emit the decoded byte; if a |
---|
| 33 | length then get the distance and emit the referred-to bytes from the |
---|
| 34 | sliding window of previously emitted data. |
---|
| 35 | |
---|
| 36 | There are (currently) three kinds of inflate blocks: stored, fixed, and |
---|
| 37 | dynamic. The compressor deals with some chunk of data at a time, and |
---|
| 38 | decides which method to use on a chunk-by-chunk basis. A chunk might |
---|
| 39 | typically be 32 K or 64 K. If the chunk is incompressible, then the |
---|
| 40 | "stored" method is used. In this case, the bytes are simply stored as |
---|
| 41 | is, eight bits per byte, with none of the above coding. The bytes are |
---|
| 42 | preceded by a count, since there is no longer an EOB code. |
---|
| 43 | |
---|
| 44 | If the data is compressible, then either the fixed or dynamic methods |
---|
| 45 | are used. In the dynamic method, the compressed data is preceded by |
---|
| 46 | an encoding of the literal/length and distance Huffman codes that are |
---|
| 47 | to be used to decode this block. The representation is itself Huffman |
---|
| 48 | coded, and so is preceded by a description of that code. These code |
---|
| 49 | descriptions take up a little space, and so for small blocks, there is |
---|
| 50 | a predefined set of codes, called the fixed codes. The fixed method is |
---|
| 51 | used if the block codes up smaller that way (usually for quite small |
---|
| 52 | chunks), otherwise the dynamic method is used. In the latter case, the |
---|
| 53 | codes are customized to the probabilities in the current block, and so |
---|
| 54 | can code it much better than the pre-determined fixed codes. |
---|
| 55 | |
---|
| 56 | The Huffman codes themselves are decoded using a multi-level table |
---|
| 57 | lookup, in order to maximize the speed of decoding plus the speed of |
---|
| 58 | building the decoding tables. See the comments below that precede the |
---|
| 59 | lbits and dbits tuning parameters. |
---|
| 60 | */ |
---|
| 61 | |
---|
| 62 | /* |
---|
| 63 | Notes beyond the 1.93a appnote.txt: |
---|
| 64 | |
---|
| 65 | 1. Distance pointers never point before the beginning of the output |
---|
| 66 | stream. |
---|
| 67 | 2. Distance pointers can point back across blocks, up to 32k away. |
---|
| 68 | 3. There is an implied maximum of 7 bits for the bit length table and |
---|
| 69 | 15 bits for the actual data. |
---|
| 70 | 4. If only one code exists, then it is encoded using one bit. (Zero |
---|
| 71 | would be more efficient, but perhaps a little confusing.) If two |
---|
| 72 | codes exist, they are coded using one bit each (0 and 1). |
---|
| 73 | 5. There is no way of sending zero distance codes--a dummy must be |
---|
| 74 | sent if there are none. (History: a pre 2.0 version of PKZIP would |
---|
| 75 | store blocks with no distance codes, but this was discovered to be |
---|
| 76 | too harsh a criterion.) Valid only for 1.93a. 2.04c does allow |
---|
| 77 | zero distance codes, which is sent as one code of zero bits in |
---|
| 78 | length. |
---|
| 79 | 6. There are up to 286 literal/length codes. Code 256 represents the |
---|
| 80 | end-of-block. Note however that the static length tree defines |
---|
| 81 | 288 codes just to fill out the Huffman codes. Codes 286 and 287 |
---|
| 82 | cannot be used though, since there is no length base or extra bits |
---|
| 83 | defined for them. Similarly, there are up to 30 distance codes. |
---|
| 84 | However, static trees define 32 codes (all 5 bits) to fill out the |
---|
| 85 | Huffman codes, but the last two had better not show up in the data. |
---|
| 86 | 7. Unzip can check dynamic Huffman blocks for complete code sets. |
---|
| 87 | The exception is that a single code would not be complete (see #4). |
---|
| 88 | 8. The five bits following the block type is really the number of |
---|
| 89 | literal codes sent minus 257. |
---|
| 90 | 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits |
---|
| 91 | (1+6+6). Therefore, to output three times the length, you output |
---|
| 92 | three codes (1+1+1), whereas to output four times the same length, |
---|
| 93 | you only need two codes (1+3). Hmm. |
---|
| 94 | 10. In the tree reconstruction algorithm, Code = Code + Increment |
---|
| 95 | only if BitLength(i) is not zero. (Pretty obvious.) |
---|
| 96 | 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) |
---|
| 97 | 12. Note: length code 284 can represent 227-258, but length code 285 |
---|
| 98 | really is 258. The last length deserves its own, short code |
---|
| 99 | since it gets used a lot in very redundant files. The length |
---|
| 100 | 258 is special since 258 - 3 (the min match length) is 255. |
---|
| 101 | 13. The literal/length and distance code bit lengths are read as a |
---|
| 102 | single stream of lengths. It is possible (and advantageous) for |
---|
| 103 | a repeat code (16, 17, or 18) to go across the boundary between |
---|
| 104 | the two sets of lengths. |
---|
| 105 | */ |
---|
| 106 | |
---|
| 107 | #ifdef RCSID |
---|
| 108 | static char rcsid[] = "#Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp #"; |
---|
| 109 | #endif |
---|
| 110 | |
---|
| 111 | #define slide window |
---|
| 112 | |
---|
| 113 | /* Huffman code lookup table entry--this entry is four bytes for machines |
---|
| 114 | that have 16-bit pointers (e.g. PC's in the small or medium model). |
---|
| 115 | Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16 |
---|
| 116 | means that v is a literal, 16 < e < 32 means that v is a pointer to |
---|
| 117 | the next table, which codes e - 16 bits, and lastly e == 99 indicates |
---|
| 118 | an unused code. If a code with e == 99 is looked up, this implies an |
---|
| 119 | error in the data. */ |
---|
| 120 | struct huft { |
---|
| 121 | uch e; /* number of extra bits or operation */ |
---|
| 122 | uch b; /* number of bits in this code or subcode */ |
---|
| 123 | union { |
---|
| 124 | ush n; /* literal, length base, or distance base */ |
---|
| 125 | struct huft *t; /* pointer to next level of table */ |
---|
| 126 | } v; |
---|
| 127 | }; |
---|
| 128 | |
---|
| 129 | /* Function prototypes */ |
---|
| 130 | STATIC int huft_build OF((unsigned *, unsigned, unsigned, |
---|
| 131 | const ush *, const ush *, struct huft **, int *)); |
---|
| 132 | STATIC int huft_free OF((struct huft *)); |
---|
| 133 | STATIC int inflate_codes OF((struct huft *, struct huft *, int, int)); |
---|
| 134 | STATIC int inflate_stored OF((void)); |
---|
| 135 | STATIC int inflate_fixed OF((void)); |
---|
| 136 | STATIC int inflate_dynamic OF((void)); |
---|
| 137 | STATIC int inflate_block OF((int *)); |
---|
| 138 | STATIC int inflate OF((void)); |
---|
| 139 | |
---|
| 140 | /* The inflate algorithm uses a sliding 32 K byte window on the uncompressed |
---|
| 141 | stream to find repeated byte strings. This is implemented here as a |
---|
| 142 | circular buffer. The index is updated simply by incrementing and then |
---|
| 143 | ANDing with 0x7fff (32K-1). */ |
---|
| 144 | /* It is left to other modules to supply the 32 K area. It is assumed |
---|
| 145 | to be usable as if it were declared "uch slide[32768];" or as just |
---|
| 146 | "uch *slide;" and then malloc'ed in the latter case. The definition |
---|
| 147 | must be in unzip.h, included above. */ |
---|
| 148 | /* unsigned wp; current position in slide */ |
---|
| 149 | #define wp outcnt |
---|
| 150 | #define flush_output(w) (wp=(w),flush_window()) |
---|
| 151 | |
---|
| 152 | /* Tables for deflate from PKZIP's appnote.txt. */ |
---|
| 153 | static const unsigned border[] = { /* Order of the bit length code lengths */ |
---|
| 154 | 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 |
---|
| 155 | }; |
---|
| 156 | |
---|
| 157 | static const ush cplens[] = { /* Copy lengths for literal codes 257..285 */ |
---|
| 158 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, |
---|
| 159 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0 |
---|
| 160 | }; |
---|
| 161 | |
---|
| 162 | /* note: see note #13 above about the 258 in this list. */ |
---|
| 163 | static const ush cplext[] = { /* Extra bits for literal codes 257..285 */ |
---|
| 164 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, |
---|
| 165 | 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99 |
---|
| 166 | }; /* 99==invalid */ |
---|
| 167 | |
---|
| 168 | static const ush cpdist[] = { /* Copy offsets for distance codes 0..29 */ |
---|
| 169 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, |
---|
| 170 | 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, |
---|
| 171 | 8193, 12289, 16385, 24577 |
---|
| 172 | }; |
---|
| 173 | |
---|
| 174 | static const ush cpdext[] = { /* Extra bits for distance codes */ |
---|
| 175 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, |
---|
| 176 | 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, |
---|
| 177 | 12, 12, 13, 13 |
---|
| 178 | }; |
---|
| 179 | |
---|
| 180 | /* Macros for inflate() bit peeking and grabbing. |
---|
| 181 | The usage is: |
---|
| 182 | |
---|
| 183 | NEEDBITS(j) |
---|
| 184 | x = b & mask_bits[j]; |
---|
| 185 | DUMPBITS(j) |
---|
| 186 | |
---|
| 187 | where NEEDBITS makes sure that b has at least j bits in it, and |
---|
| 188 | DUMPBITS removes the bits from b. The macros use the variable k |
---|
| 189 | for the number of bits in b. Normally, b and k are register |
---|
| 190 | variables for speed, and are initialized at the beginning of a |
---|
| 191 | routine that uses these macros from a global bit buffer and count. |
---|
| 192 | |
---|
| 193 | If we assume that EOB will be the longest code, then we will never |
---|
| 194 | ask for bits with NEEDBITS that are beyond the end of the stream. |
---|
| 195 | So, NEEDBITS should not read any more bytes than are needed to |
---|
| 196 | meet the request. Then no bytes need to be "returned" to the buffer |
---|
| 197 | at the end of the last block. |
---|
| 198 | |
---|
| 199 | However, this assumption is not true for fixed blocks--the EOB code |
---|
| 200 | is 7 bits, but the other literal/length codes can be 8 or 9 bits. |
---|
| 201 | (The EOB code is shorter than other codes because fixed blocks are |
---|
| 202 | generally short. So, while a block always has an EOB, many other |
---|
| 203 | literal/length codes have a significantly lower probability of |
---|
| 204 | showing up at all.) However, by making the first table have a |
---|
| 205 | lookup of seven bits, the EOB code will be found in that first |
---|
| 206 | lookup, and so will not require that too many bits be pulled from |
---|
| 207 | the stream. |
---|
| 208 | */ |
---|
| 209 | |
---|
| 210 | STATIC ulg bb; /* bit buffer */ |
---|
| 211 | STATIC unsigned bk; /* bits in bit buffer */ |
---|
| 212 | |
---|
| 213 | STATIC const ush mask_bits[] = { |
---|
| 214 | 0x0000, |
---|
| 215 | 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, |
---|
| 216 | 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff |
---|
| 217 | }; |
---|
| 218 | |
---|
| 219 | #define NEXTBYTE() (uch)get_byte() |
---|
| 220 | #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}} |
---|
| 221 | #define DUMPBITS(n) {b>>=(n);k-=(n);} |
---|
| 222 | |
---|
| 223 | /* |
---|
| 224 | Huffman code decoding is performed using a multi-level table lookup. |
---|
| 225 | The fastest way to decode is to simply build a lookup table whose |
---|
| 226 | size is determined by the longest code. However, the time it takes |
---|
| 227 | to build this table can also be a factor if the data being decoded |
---|
| 228 | is not very long. The most common codes are necessarily the |
---|
| 229 | shortest codes, so those codes dominate the decoding time, and hence |
---|
| 230 | the speed. The idea is you can have a shorter table that decodes the |
---|
| 231 | shorter, more probable codes, and then point to subsidiary tables for |
---|
| 232 | the longer codes. The time it costs to decode the longer codes is |
---|
| 233 | then traded against the time it takes to make longer tables. |
---|
| 234 | |
---|
| 235 | This results of this trade are in the variables lbits and dbits |
---|
| 236 | below. lbits is the number of bits the first level table for literal/ |
---|
| 237 | length codes can decode in one step, and dbits is the same thing for |
---|
| 238 | the distance codes. Subsequent tables are also less than or equal to |
---|
| 239 | those sizes. These values may be adjusted either when all of the |
---|
| 240 | codes are shorter than that, in which case the longest code length in |
---|
| 241 | bits is used, or when the shortest code is *longer* than the requested |
---|
| 242 | table size, in which case the length of the shortest code in bits is |
---|
| 243 | used. |
---|
| 244 | |
---|
| 245 | There are two different values for the two tables, since they code a |
---|
| 246 | different number of possibilities each. The literal/length table |
---|
| 247 | codes 286 possible values, or in a flat code, a little over eight |
---|
| 248 | bits. The distance table codes 30 possible values, or a little less |
---|
| 249 | than five bits, flat. The optimum values for speed end up being |
---|
| 250 | about one bit more than those, so lbits is 8+1 and dbits is 5+1. |
---|
| 251 | The optimum values may differ though from machine to machine, and |
---|
| 252 | possibly even between compilers. Your mileage may vary. |
---|
| 253 | */ |
---|
| 254 | |
---|
| 255 | STATIC const int lbits = 9; /* bits in base literal/length lookup table */ |
---|
| 256 | STATIC const int dbits = 6; /* bits in base distance lookup table */ |
---|
| 257 | |
---|
| 258 | /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */ |
---|
| 259 | #define BMAX 16 /* maximum bit length of any code (16 for explode) */ |
---|
| 260 | #define N_MAX 288 /* maximum number of codes in any set */ |
---|
| 261 | |
---|
| 262 | STATIC unsigned hufts; /* track memory usage */ |
---|
| 263 | |
---|
| 264 | STATIC int huft_build(b, n, s, d, e, t, m) |
---|
| 265 | unsigned *b; /* code lengths in bits (all assumed <= BMAX) */ |
---|
| 266 | unsigned n; /* number of codes (assumed <= N_MAX) */ |
---|
| 267 | unsigned s; /* number of simple-valued codes (0..s-1) */ |
---|
| 268 | const ush *d; /* list of base values for non-simple codes */ |
---|
| 269 | const ush *e; /* list of extra bits for non-simple codes */ |
---|
| 270 | struct huft **t; /* result: starting table */ |
---|
| 271 | int *m; /* maximum lookup bits, returns actual */ |
---|
| 272 | /* Given a list of code lengths and a maximum table size, make a set of |
---|
| 273 | tables to decode that set of codes. Return zero on success, one if |
---|
| 274 | the given code set is incomplete (the tables are still built in this |
---|
| 275 | case), two if the input is invalid (all zero length codes or an |
---|
| 276 | oversubscribed set of lengths), and three if not enough memory. */ |
---|
| 277 | { |
---|
| 278 | unsigned a; /* counter for codes of length k */ |
---|
| 279 | unsigned c[BMAX + 1]; /* bit length count table */ |
---|
| 280 | unsigned f; /* i repeats in table every f entries */ |
---|
| 281 | int g; /* maximum code length */ |
---|
| 282 | int h; /* table level */ |
---|
| 283 | register unsigned i; /* counter, current code */ |
---|
| 284 | register unsigned j; /* counter */ |
---|
| 285 | register int k; /* number of bits in current code */ |
---|
| 286 | int l; /* bits per table (returned in m) */ |
---|
| 287 | register unsigned *p; /* pointer into c[], b[], or v[] */ |
---|
| 288 | register struct huft *q; /* points to current table */ |
---|
| 289 | struct huft r; /* table entry for structure assignment */ |
---|
| 290 | struct huft *u[BMAX]; /* table stack */ |
---|
| 291 | unsigned v[N_MAX]; /* values in order of bit length */ |
---|
| 292 | register int w; /* bits before this table == (l * h) */ |
---|
| 293 | unsigned x[BMAX + 1]; /* bit offsets, then code stack */ |
---|
| 294 | unsigned *xp; /* pointer into x */ |
---|
| 295 | int y; /* number of dummy codes added */ |
---|
| 296 | unsigned z; /* number of entries in current table */ |
---|
| 297 | |
---|
| 298 | DEBG("huft1 "); |
---|
| 299 | |
---|
| 300 | /* Generate counts for each bit length */ |
---|
| 301 | memzero(c, sizeof(c)); |
---|
| 302 | p = b; |
---|
| 303 | i = n; |
---|
| 304 | do { |
---|
| 305 | Tracecv(*p, |
---|
| 306 | (stderr, |
---|
| 307 | (n - i >= ' ' |
---|
| 308 | && n - i <= '~' ? "%c %d\n" : "0x%x %d\n"), n - i, *p)); |
---|
| 309 | c[*p]++; /* assume all entries <= BMAX */ |
---|
| 310 | p++; /* Can't combine with above line (Solaris bug) */ |
---|
| 311 | } while (--i); |
---|
| 312 | if (c[0] == n) { /* null input--all zero length codes */ |
---|
| 313 | *t = (struct huft *)NULL; |
---|
| 314 | *m = 0; |
---|
| 315 | return 0; |
---|
| 316 | } |
---|
| 317 | |
---|
| 318 | DEBG("huft2 "); |
---|
| 319 | |
---|
| 320 | /* Find minimum and maximum length, bound *m by those */ |
---|
| 321 | l = *m; |
---|
| 322 | for (j = 1; j <= BMAX; j++) |
---|
| 323 | if (c[j]) |
---|
| 324 | break; |
---|
| 325 | k = j; /* minimum code length */ |
---|
| 326 | if ((unsigned)l < j) |
---|
| 327 | l = j; |
---|
| 328 | for (i = BMAX; i; i--) |
---|
| 329 | if (c[i]) |
---|
| 330 | break; |
---|
| 331 | g = i; /* maximum code length */ |
---|
| 332 | if ((unsigned)l > i) |
---|
| 333 | l = i; |
---|
| 334 | *m = l; |
---|
| 335 | |
---|
| 336 | DEBG("huft3 "); |
---|
| 337 | |
---|
| 338 | /* Adjust last length count to fill out codes, if needed */ |
---|
| 339 | for (y = 1 << j; j < i; j++, y <<= 1) |
---|
| 340 | if ((y -= c[j]) < 0) |
---|
| 341 | return 2; /* bad input: more codes than bits */ |
---|
| 342 | if ((y -= c[i]) < 0) |
---|
| 343 | return 2; |
---|
| 344 | c[i] += y; |
---|
| 345 | |
---|
| 346 | DEBG("huft4 "); |
---|
| 347 | |
---|
| 348 | /* Generate starting offsets into the value table for each length */ |
---|
| 349 | x[1] = j = 0; |
---|
| 350 | p = c + 1; |
---|
| 351 | xp = x + 2; |
---|
| 352 | while (--i) { /* note that i == g from above */ |
---|
| 353 | *xp++ = (j += *p++); |
---|
| 354 | } |
---|
| 355 | |
---|
| 356 | DEBG("huft5 "); |
---|
| 357 | |
---|
| 358 | /* Make a table of values in order of bit lengths */ |
---|
| 359 | p = b; |
---|
| 360 | i = 0; |
---|
| 361 | do { |
---|
| 362 | if ((j = *p++) != 0) |
---|
| 363 | v[x[j]++] = i; |
---|
| 364 | } while (++i < n); |
---|
| 365 | |
---|
| 366 | DEBG("h6 "); |
---|
| 367 | |
---|
| 368 | /* Generate the Huffman codes and for each, make the table entries */ |
---|
| 369 | x[0] = i = 0; /* first Huffman code is zero */ |
---|
| 370 | p = v; /* grab values in bit order */ |
---|
| 371 | h = -1; /* no tables yet--level -1 */ |
---|
| 372 | w = -l; /* bits decoded == (l * h) */ |
---|
| 373 | u[0] = (struct huft *)NULL; /* just to keep compilers happy */ |
---|
| 374 | q = (struct huft *)NULL; /* ditto */ |
---|
| 375 | z = 0; /* ditto */ |
---|
| 376 | DEBG("h6a "); |
---|
| 377 | |
---|
| 378 | /* go through the bit lengths (k already is bits in shortest code) */ |
---|
| 379 | for (; k <= g; k++) { |
---|
| 380 | DEBG("h6b "); |
---|
| 381 | a = c[k]; |
---|
| 382 | while (a--) { |
---|
| 383 | DEBG("h6b1 "); |
---|
| 384 | /* here i is the Huffman code of length k bits for value *p */ |
---|
| 385 | /* make tables up to required level */ |
---|
| 386 | while (k > w + l) { |
---|
| 387 | DEBG1("1 "); |
---|
| 388 | h++; |
---|
| 389 | w += l; /* previous table always l bits */ |
---|
| 390 | |
---|
| 391 | /* compute minimum size table less than or equal to l bits */ |
---|
| 392 | z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */ |
---|
| 393 | if ((f = 1 << (j = k - w)) > a + 1) { /* try a k-w bit table *//* too few codes for k-w bit table */ |
---|
| 394 | DEBG1("2 "); |
---|
| 395 | f -= a + 1; /* deduct codes from patterns left */ |
---|
| 396 | xp = c + k; |
---|
| 397 | while (++j < z) { /* try smaller tables up to z bits */ |
---|
| 398 | if ((f <<= 1) <= *++xp) |
---|
| 399 | break; /* enough codes to use up j bits */ |
---|
| 400 | f -= *xp; /* else deduct codes from patterns */ |
---|
| 401 | } |
---|
| 402 | } |
---|
| 403 | DEBG1("3 "); |
---|
| 404 | z = 1 << j; /* table entries for j-bit table */ |
---|
| 405 | |
---|
| 406 | /* allocate and link in new table */ |
---|
| 407 | if ((q = |
---|
| 408 | (struct huft *)malloc((z + 1) * sizeof(struct huft))) == |
---|
| 409 | (struct huft *)NULL) { |
---|
| 410 | if (h) |
---|
| 411 | huft_free(u[0]); |
---|
| 412 | return 3; /* not enough memory */ |
---|
| 413 | } |
---|
| 414 | DEBG1("4 "); |
---|
| 415 | hufts += z + 1; /* track memory usage */ |
---|
| 416 | *t = q + 1; /* link to list for huft_free() */ |
---|
| 417 | *(t = &(q->v.t)) = (struct huft *)NULL; |
---|
| 418 | u[h] = ++q; /* table starts after link */ |
---|
| 419 | |
---|
| 420 | DEBG1("5 "); |
---|
| 421 | /* connect to last table, if there is one */ |
---|
| 422 | if (h) { |
---|
| 423 | x[h] = i; /* save pattern for backing up */ |
---|
| 424 | r.b = (uch) l; /* bits to dump before this table */ |
---|
| 425 | r.e = (uch) (16 + j); /* bits in this table */ |
---|
| 426 | r.v.t = q; /* pointer to this table */ |
---|
| 427 | j = i >> (w - l); /* (get around Turbo C bug) */ |
---|
| 428 | u[h - 1][j] = r; /* connect to last table */ |
---|
| 429 | } |
---|
| 430 | DEBG1("6 "); |
---|
| 431 | } |
---|
| 432 | DEBG("h6c "); |
---|
| 433 | |
---|
| 434 | /* set up table entry in r */ |
---|
| 435 | r.b = (uch) (k - w); |
---|
| 436 | if (p >= v + n) |
---|
| 437 | r.e = 99; /* out of values--invalid code */ |
---|
| 438 | else if (*p < s) { |
---|
| 439 | r.e = (uch) (*p < 256 ? 16 : 15); /* 256 is end-of-block code */ |
---|
| 440 | r.v.n = (ush) (*p); /* simple code is just the value */ |
---|
| 441 | p++; /* one compiler does not like *p++ */ |
---|
| 442 | } else { |
---|
| 443 | r.e = (uch) e[*p - s]; /* non-simple--look up in lists */ |
---|
| 444 | r.v.n = d[*p++ - s]; |
---|
| 445 | } |
---|
| 446 | DEBG("h6d "); |
---|
| 447 | |
---|
| 448 | /* fill code-like entries with r */ |
---|
| 449 | f = 1 << (k - w); |
---|
| 450 | for (j = i >> w; j < z; j += f) |
---|
| 451 | q[j] = r; |
---|
| 452 | |
---|
| 453 | /* backwards increment the k-bit code i */ |
---|
| 454 | for (j = 1 << (k - 1); i & j; j >>= 1) |
---|
| 455 | i ^= j; |
---|
| 456 | i ^= j; |
---|
| 457 | |
---|
| 458 | /* backup over finished tables */ |
---|
| 459 | while ((i & ((1 << w) - 1)) != x[h]) { |
---|
| 460 | h--; /* don't need to update q */ |
---|
| 461 | w -= l; |
---|
| 462 | } |
---|
| 463 | DEBG("h6e "); |
---|
| 464 | } |
---|
| 465 | DEBG("h6f "); |
---|
| 466 | } |
---|
| 467 | |
---|
| 468 | DEBG("huft7 "); |
---|
| 469 | |
---|
| 470 | /* Return true (1) if we were given an incomplete table */ |
---|
| 471 | return y != 0 && g != 1; |
---|
| 472 | } |
---|
| 473 | |
---|
| 474 | STATIC int huft_free(t) |
---|
| 475 | struct huft *t; /* table to free */ |
---|
| 476 | /* Free the malloc'ed tables built by huft_build(), which makes a linked |
---|
| 477 | list of the tables it made, with the links in a dummy first entry of |
---|
| 478 | each table. */ |
---|
| 479 | { |
---|
| 480 | register struct huft *p, *q; |
---|
| 481 | |
---|
| 482 | /* Go through linked list, freeing from the malloced (t[-1]) address. */ |
---|
| 483 | p = t; |
---|
| 484 | while (p != (struct huft *)NULL) { |
---|
| 485 | q = (--p)->v.t; |
---|
| 486 | free((char *)p); |
---|
| 487 | p = q; |
---|
| 488 | } |
---|
| 489 | return 0; |
---|
| 490 | } |
---|
| 491 | |
---|
| 492 | STATIC int inflate_codes(tl, td, bl, bd) |
---|
| 493 | struct huft *tl, *td; /* literal/length and distance decoder tables */ |
---|
| 494 | int bl, bd; /* number of bits decoded by tl[] and td[] */ |
---|
| 495 | /* inflate (decompress) the codes in a deflated (compressed) block. |
---|
| 496 | Return an error code or zero if it all goes ok. */ |
---|
| 497 | { |
---|
| 498 | register unsigned e; /* table entry flag/number of extra bits */ |
---|
| 499 | unsigned n, d; /* length and index for copy */ |
---|
| 500 | unsigned w; /* current window position */ |
---|
| 501 | struct huft *t; /* pointer to table entry */ |
---|
| 502 | unsigned ml, md; /* masks for bl and bd bits */ |
---|
| 503 | register ulg b; /* bit buffer */ |
---|
| 504 | register unsigned k; /* number of bits in bit buffer */ |
---|
| 505 | |
---|
| 506 | /* make local copies of globals */ |
---|
| 507 | b = bb; /* initialize bit buffer */ |
---|
| 508 | k = bk; |
---|
| 509 | w = wp; /* initialize window position */ |
---|
| 510 | |
---|
| 511 | /* inflate the coded data */ |
---|
| 512 | ml = mask_bits[bl]; /* precompute masks for speed */ |
---|
| 513 | md = mask_bits[bd]; |
---|
| 514 | for (;;) { /* do until end of block */ |
---|
| 515 | NEEDBITS((unsigned)bl) |
---|
| 516 | if ((e = (t = tl + ((unsigned)b & ml))->e) > 16) |
---|
| 517 | do { |
---|
| 518 | if (e == 99) |
---|
| 519 | return 1; |
---|
| 520 | DUMPBITS(t->b) |
---|
| 521 | e -= 16; |
---|
| 522 | NEEDBITS(e) |
---|
| 523 | } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); |
---|
| 524 | DUMPBITS(t->b) |
---|
| 525 | if (e == 16) { /* then it's a literal */ |
---|
| 526 | slide[w++] = (uch) t->v.n; |
---|
| 527 | Tracevv((stderr, "%c", slide[w - 1])); |
---|
| 528 | if (w == WSIZE) { |
---|
| 529 | flush_output(w); |
---|
| 530 | w = 0; |
---|
| 531 | } |
---|
| 532 | } else { /* it's an EOB or a length */ |
---|
| 533 | |
---|
| 534 | /* exit if end of block */ |
---|
| 535 | if (e == 15) |
---|
| 536 | break; |
---|
| 537 | |
---|
| 538 | /* get length of block to copy */ |
---|
| 539 | NEEDBITS(e) |
---|
| 540 | n = t->v.n + ((unsigned)b & mask_bits[e]); |
---|
| 541 | DUMPBITS(e); |
---|
| 542 | |
---|
| 543 | /* decode distance of block to copy */ |
---|
| 544 | NEEDBITS((unsigned)bd) |
---|
| 545 | if ((e = (t = td + ((unsigned)b & md))->e) > 16) |
---|
| 546 | do { |
---|
| 547 | if (e == 99) |
---|
| 548 | return 1; |
---|
| 549 | DUMPBITS(t->b) |
---|
| 550 | e -= 16; |
---|
| 551 | NEEDBITS(e) |
---|
| 552 | } while ((e = |
---|
| 553 | (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); |
---|
| 554 | DUMPBITS(t->b) |
---|
| 555 | NEEDBITS(e) |
---|
| 556 | d = w - t->v.n - ((unsigned)b & mask_bits[e]); |
---|
| 557 | DUMPBITS(e) |
---|
| 558 | Tracevv((stderr, "\\[%d,%d]", w - d, n)); |
---|
| 559 | |
---|
| 560 | /* do the copy */ |
---|
| 561 | do { |
---|
| 562 | n -= (e = |
---|
| 563 | (e = WSIZE - ((d &= WSIZE - 1) > w ? d : w)) > n ? n : e); |
---|
| 564 | #if !defined(NOMEMCPY) && !defined(DEBUG) |
---|
| 565 | if (w - d >= e) { /* (this test assumes unsigned comparison) */ |
---|
| 566 | memcpy(slide + w, slide + d, e); |
---|
| 567 | w += e; |
---|
| 568 | d += e; |
---|
| 569 | } else /* do it slow to avoid memcpy() overlap */ |
---|
| 570 | #endif /* !NOMEMCPY */ |
---|
| 571 | do { |
---|
| 572 | slide[w++] = slide[d++]; |
---|
| 573 | Tracevv((stderr, "%c", slide[w - 1])); |
---|
| 574 | } while (--e); |
---|
| 575 | if (w == WSIZE) { |
---|
| 576 | flush_output(w); |
---|
| 577 | w = 0; |
---|
| 578 | } |
---|
| 579 | } while (n); |
---|
| 580 | } |
---|
| 581 | } |
---|
| 582 | |
---|
| 583 | /* restore the globals from the locals */ |
---|
| 584 | wp = w; /* restore global window pointer */ |
---|
| 585 | bb = b; /* restore global bit buffer */ |
---|
| 586 | bk = k; |
---|
| 587 | |
---|
| 588 | /* done */ |
---|
| 589 | return 0; |
---|
| 590 | } |
---|
| 591 | |
---|
| 592 | STATIC int inflate_stored() |
---|
| 593 | /* "decompress" an inflated type 0 (stored) block. */ |
---|
| 594 | { |
---|
| 595 | unsigned n; /* number of bytes in block */ |
---|
| 596 | unsigned w; /* current window position */ |
---|
| 597 | register ulg b; /* bit buffer */ |
---|
| 598 | register unsigned k; /* number of bits in bit buffer */ |
---|
| 599 | |
---|
| 600 | DEBG("<stor"); |
---|
| 601 | |
---|
| 602 | /* make local copies of globals */ |
---|
| 603 | b = bb; /* initialize bit buffer */ |
---|
| 604 | k = bk; |
---|
| 605 | w = wp; /* initialize window position */ |
---|
| 606 | |
---|
| 607 | /* go to byte boundary */ |
---|
| 608 | n = k & 7; |
---|
| 609 | DUMPBITS(n); |
---|
| 610 | |
---|
| 611 | /* get the length and its complement */ |
---|
| 612 | NEEDBITS(16) |
---|
| 613 | n = ((unsigned)b & 0xffff); |
---|
| 614 | DUMPBITS(16) |
---|
| 615 | NEEDBITS(16) |
---|
| 616 | if (n != (unsigned)((~b) & 0xffff)) |
---|
| 617 | return 1; /* error in compressed data */ |
---|
| 618 | DUMPBITS(16) |
---|
| 619 | |
---|
| 620 | /* read and output the compressed data */ |
---|
| 621 | while (n--) { |
---|
| 622 | NEEDBITS(8) |
---|
| 623 | slide[w++] = (uch) b; |
---|
| 624 | if (w == WSIZE) { |
---|
| 625 | flush_output(w); |
---|
| 626 | w = 0; |
---|
| 627 | } |
---|
| 628 | DUMPBITS(8) |
---|
| 629 | } |
---|
| 630 | |
---|
| 631 | /* restore the globals from the locals */ |
---|
| 632 | wp = w; /* restore global window pointer */ |
---|
| 633 | bb = b; /* restore global bit buffer */ |
---|
| 634 | bk = k; |
---|
| 635 | |
---|
| 636 | DEBG(">"); |
---|
| 637 | return 0; |
---|
| 638 | } |
---|
| 639 | |
---|
| 640 | STATIC int inflate_fixed() |
---|
| 641 | /* decompress an inflated type 1 (fixed Huffman codes) block. We should |
---|
| 642 | either replace this with a custom decoder, or at least precompute the |
---|
| 643 | Huffman tables. */ |
---|
| 644 | { |
---|
| 645 | int i; /* temporary variable */ |
---|
| 646 | struct huft *tl; /* literal/length code table */ |
---|
| 647 | struct huft *td; /* distance code table */ |
---|
| 648 | int bl; /* lookup bits for tl */ |
---|
| 649 | int bd; /* lookup bits for td */ |
---|
| 650 | unsigned l[288]; /* length list for huft_build */ |
---|
| 651 | |
---|
| 652 | DEBG("<fix"); |
---|
| 653 | |
---|
| 654 | /* set up literal table */ |
---|
| 655 | for (i = 0; i < 144; i++) |
---|
| 656 | l[i] = 8; |
---|
| 657 | for (; i < 256; i++) |
---|
| 658 | l[i] = 9; |
---|
| 659 | for (; i < 280; i++) |
---|
| 660 | l[i] = 7; |
---|
| 661 | for (; i < 288; i++) /* make a complete, but wrong code set */ |
---|
| 662 | l[i] = 8; |
---|
| 663 | bl = 7; |
---|
| 664 | if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0) |
---|
| 665 | return i; |
---|
| 666 | |
---|
| 667 | /* set up distance table */ |
---|
| 668 | for (i = 0; i < 30; i++) /* make an incomplete code set */ |
---|
| 669 | l[i] = 5; |
---|
| 670 | bd = 5; |
---|
| 671 | if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1) { |
---|
| 672 | huft_free(tl); |
---|
| 673 | |
---|
| 674 | DEBG(">"); |
---|
| 675 | return i; |
---|
| 676 | } |
---|
| 677 | |
---|
| 678 | /* decompress until an end-of-block code */ |
---|
| 679 | if (inflate_codes(tl, td, bl, bd)) |
---|
| 680 | return 1; |
---|
| 681 | |
---|
| 682 | /* free the decoding tables, return */ |
---|
| 683 | huft_free(tl); |
---|
| 684 | huft_free(td); |
---|
| 685 | return 0; |
---|
| 686 | } |
---|
| 687 | |
---|
| 688 | STATIC int inflate_dynamic() |
---|
| 689 | /* decompress an inflated type 2 (dynamic Huffman codes) block. */ |
---|
| 690 | { |
---|
| 691 | int i; /* temporary variables */ |
---|
| 692 | unsigned j; |
---|
| 693 | unsigned l; /* last length */ |
---|
| 694 | unsigned m; /* mask for bit lengths table */ |
---|
| 695 | unsigned n; /* number of lengths to get */ |
---|
| 696 | struct huft *tl; /* literal/length code table */ |
---|
| 697 | struct huft *td; /* distance code table */ |
---|
| 698 | int bl; /* lookup bits for tl */ |
---|
| 699 | int bd; /* lookup bits for td */ |
---|
| 700 | unsigned nb; /* number of bit length codes */ |
---|
| 701 | unsigned nl; /* number of literal/length codes */ |
---|
| 702 | unsigned nd; /* number of distance codes */ |
---|
| 703 | #ifdef PKZIP_BUG_WORKAROUND |
---|
| 704 | unsigned ll[288 + 32]; /* literal/length and distance code lengths */ |
---|
| 705 | #else |
---|
| 706 | unsigned ll[286 + 30]; /* literal/length and distance code lengths */ |
---|
| 707 | #endif |
---|
| 708 | register ulg b; /* bit buffer */ |
---|
| 709 | register unsigned k; /* number of bits in bit buffer */ |
---|
| 710 | |
---|
| 711 | DEBG("<dyn"); |
---|
| 712 | |
---|
| 713 | /* make local bit buffer */ |
---|
| 714 | b = bb; |
---|
| 715 | k = bk; |
---|
| 716 | |
---|
| 717 | /* read in table lengths */ |
---|
| 718 | NEEDBITS(5) |
---|
| 719 | nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */ |
---|
| 720 | DUMPBITS(5) |
---|
| 721 | NEEDBITS(5) |
---|
| 722 | nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */ |
---|
| 723 | DUMPBITS(5) |
---|
| 724 | NEEDBITS(4) |
---|
| 725 | nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */ |
---|
| 726 | DUMPBITS(4) |
---|
| 727 | #ifdef PKZIP_BUG_WORKAROUND |
---|
| 728 | if (nl > 288 || nd > 32) |
---|
| 729 | #else |
---|
| 730 | if (nl > 286 || nd > 30) |
---|
| 731 | #endif |
---|
| 732 | return 1; /* bad lengths */ |
---|
| 733 | |
---|
| 734 | DEBG("dyn1 "); |
---|
| 735 | |
---|
| 736 | /* read in bit-length-code lengths */ |
---|
| 737 | for (j = 0; j < nb; j++) { |
---|
| 738 | NEEDBITS(3) |
---|
| 739 | ll[border[j]] = (unsigned)b & 7; |
---|
| 740 | DUMPBITS(3) |
---|
| 741 | } |
---|
| 742 | for (; j < 19; j++) |
---|
| 743 | ll[border[j]] = 0; |
---|
| 744 | |
---|
| 745 | DEBG("dyn2 "); |
---|
| 746 | |
---|
| 747 | /* build decoding table for trees--single level, 7 bit lookup */ |
---|
| 748 | bl = 7; |
---|
| 749 | if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) { |
---|
| 750 | if (i == 1) |
---|
| 751 | huft_free(tl); |
---|
| 752 | return i; /* incomplete code set */ |
---|
| 753 | } |
---|
| 754 | |
---|
| 755 | DEBG("dyn3 "); |
---|
| 756 | |
---|
| 757 | /* read in literal and distance code lengths */ |
---|
| 758 | n = nl + nd; |
---|
| 759 | m = mask_bits[bl]; |
---|
| 760 | i = l = 0; |
---|
| 761 | while ((unsigned)i < n) { |
---|
| 762 | NEEDBITS((unsigned)bl) |
---|
| 763 | j = (td = tl + ((unsigned)b & m))->b; |
---|
| 764 | DUMPBITS(j) |
---|
| 765 | j = td->v.n; |
---|
| 766 | if (j < 16) /* length of code in bits (0..15) */ |
---|
| 767 | ll[i++] = l = j; /* save last length in l */ |
---|
| 768 | else if (j == 16) { /* repeat last length 3 to 6 times */ |
---|
| 769 | NEEDBITS(2) |
---|
| 770 | j = 3 + ((unsigned)b & 3); |
---|
| 771 | DUMPBITS(2) |
---|
| 772 | if ((unsigned)i + j > n) |
---|
| 773 | return 1; |
---|
| 774 | while (j--) |
---|
| 775 | ll[i++] = l; |
---|
| 776 | } else if (j == 17) { /* 3 to 10 zero length codes */ |
---|
| 777 | NEEDBITS(3) |
---|
| 778 | j = 3 + ((unsigned)b & 7); |
---|
| 779 | DUMPBITS(3) |
---|
| 780 | if ((unsigned)i + j > n) |
---|
| 781 | return 1; |
---|
| 782 | while (j--) |
---|
| 783 | ll[i++] = 0; |
---|
| 784 | l = 0; |
---|
| 785 | } else { /* j == 18: 11 to 138 zero length codes */ |
---|
| 786 | |
---|
| 787 | NEEDBITS(7) |
---|
| 788 | j = 11 + ((unsigned)b & 0x7f); |
---|
| 789 | DUMPBITS(7) |
---|
| 790 | if ((unsigned)i + j > n) |
---|
| 791 | return 1; |
---|
| 792 | while (j--) |
---|
| 793 | ll[i++] = 0; |
---|
| 794 | l = 0; |
---|
| 795 | } |
---|
| 796 | } |
---|
| 797 | |
---|
| 798 | DEBG("dyn4 "); |
---|
| 799 | |
---|
| 800 | /* free decoding table for trees */ |
---|
| 801 | huft_free(tl); |
---|
| 802 | |
---|
| 803 | DEBG("dyn5 "); |
---|
| 804 | |
---|
| 805 | /* restore the global bit buffer */ |
---|
| 806 | bb = b; |
---|
| 807 | bk = k; |
---|
| 808 | |
---|
| 809 | DEBG("dyn5a "); |
---|
| 810 | |
---|
| 811 | /* build the decoding tables for literal/length and distance codes */ |
---|
| 812 | bl = lbits; |
---|
| 813 | if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0) { |
---|
| 814 | DEBG("dyn5b "); |
---|
| 815 | if (i == 1) { |
---|
| 816 | error(" incomplete literal tree"); |
---|
| 817 | huft_free(tl); |
---|
| 818 | } |
---|
| 819 | return i; /* incomplete code set */ |
---|
| 820 | } |
---|
| 821 | DEBG("dyn5c "); |
---|
| 822 | bd = dbits; |
---|
| 823 | if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0) { |
---|
| 824 | DEBG("dyn5d "); |
---|
| 825 | if (i == 1) { |
---|
| 826 | error(" incomplete distance tree"); |
---|
| 827 | #ifdef PKZIP_BUG_WORKAROUND |
---|
| 828 | i = 0; |
---|
| 829 | } |
---|
| 830 | #else |
---|
| 831 | huft_free(td); |
---|
| 832 | } |
---|
| 833 | huft_free(tl); |
---|
| 834 | return i; /* incomplete code set */ |
---|
| 835 | #endif |
---|
| 836 | } |
---|
| 837 | |
---|
| 838 | DEBG("dyn6 "); |
---|
| 839 | |
---|
| 840 | /* decompress until an end-of-block code */ |
---|
| 841 | if (inflate_codes(tl, td, bl, bd)) |
---|
| 842 | return 1; |
---|
| 843 | |
---|
| 844 | DEBG("dyn7 "); |
---|
| 845 | |
---|
| 846 | /* free the decoding tables, return */ |
---|
| 847 | huft_free(tl); |
---|
| 848 | huft_free(td); |
---|
| 849 | |
---|
| 850 | DEBG(">"); |
---|
| 851 | return 0; |
---|
| 852 | } |
---|
| 853 | |
---|
| 854 | STATIC int inflate_block(e) |
---|
| 855 | int *e; /* last block flag */ |
---|
| 856 | /* decompress an inflated block */ |
---|
| 857 | { |
---|
| 858 | unsigned t; /* block type */ |
---|
| 859 | register ulg b; /* bit buffer */ |
---|
| 860 | register unsigned k; /* number of bits in bit buffer */ |
---|
| 861 | |
---|
| 862 | DEBG("<blk"); |
---|
| 863 | |
---|
| 864 | /* make local bit buffer */ |
---|
| 865 | b = bb; |
---|
| 866 | k = bk; |
---|
| 867 | |
---|
| 868 | /* read in last block bit */ |
---|
| 869 | NEEDBITS(1) |
---|
| 870 | * e = (int)b & 1; |
---|
| 871 | DUMPBITS(1) |
---|
| 872 | |
---|
| 873 | /* read in block type */ |
---|
| 874 | NEEDBITS(2) |
---|
| 875 | t = (unsigned)b & 3; |
---|
| 876 | DUMPBITS(2) |
---|
| 877 | |
---|
| 878 | /* restore the global bit buffer */ |
---|
| 879 | bb = b; |
---|
| 880 | bk = k; |
---|
| 881 | |
---|
| 882 | /* inflate that block type */ |
---|
| 883 | if (t == 2) |
---|
| 884 | return inflate_dynamic(); |
---|
| 885 | if (t == 0) |
---|
| 886 | return inflate_stored(); |
---|
| 887 | if (t == 1) |
---|
| 888 | return inflate_fixed(); |
---|
| 889 | |
---|
| 890 | DEBG(">"); |
---|
| 891 | |
---|
| 892 | /* bad block type */ |
---|
| 893 | return 2; |
---|
| 894 | } |
---|
| 895 | |
---|
| 896 | STATIC int inflate() |
---|
| 897 | /* decompress an inflated entry */ |
---|
| 898 | { |
---|
| 899 | int e; /* last block flag */ |
---|
| 900 | int r; /* result code */ |
---|
| 901 | unsigned h; /* maximum struct huft's malloc'ed */ |
---|
| 902 | void *ptr; |
---|
| 903 | |
---|
| 904 | /* initialize window, bit buffer */ |
---|
| 905 | wp = 0; |
---|
| 906 | bk = 0; |
---|
| 907 | bb = 0; |
---|
| 908 | |
---|
| 909 | /* decompress until the last block */ |
---|
| 910 | h = 0; |
---|
| 911 | do { |
---|
| 912 | hufts = 0; |
---|
| 913 | gzip_mark(&ptr); |
---|
| 914 | if ((r = inflate_block(&e)) != 0) { |
---|
| 915 | gzip_release(&ptr); |
---|
| 916 | return r; |
---|
| 917 | } |
---|
| 918 | gzip_release(&ptr); |
---|
| 919 | if (hufts > h) |
---|
| 920 | h = hufts; |
---|
| 921 | } while (!e); |
---|
| 922 | |
---|
| 923 | /* Undo too much lookahead. The next read will be byte aligned so we |
---|
| 924 | * can discard unused bits in the last meaningful byte. |
---|
| 925 | */ |
---|
| 926 | while (bk >= 8) { |
---|
| 927 | bk -= 8; |
---|
| 928 | unget_byte(); |
---|
| 929 | } |
---|
| 930 | |
---|
| 931 | /* flush out slide */ |
---|
| 932 | flush_output(wp); |
---|
| 933 | |
---|
| 934 | /* return success */ |
---|
| 935 | #ifdef DEBUG |
---|
| 936 | fprintf(stderr, "<%u> ", h); |
---|
| 937 | #endif /* DEBUG */ |
---|
| 938 | return 0; |
---|
| 939 | } |
---|
| 940 | |
---|
| 941 | /********************************************************************** |
---|
| 942 | * |
---|
| 943 | * The following are support routines for inflate.c |
---|
| 944 | * |
---|
| 945 | **********************************************************************/ |
---|
| 946 | |
---|
| 947 | static ulg crc_32_tab[256]; |
---|
| 948 | static ulg crc; /* initialized in makecrc() so it'll reside in bss */ |
---|
| 949 | #define CRC_VALUE (crc ^ 0xffffffffL) |
---|
| 950 | |
---|
| 951 | /* |
---|
| 952 | * Code to compute the CRC-32 table. Borrowed from |
---|
| 953 | * gzip-1.0.3/makecrc.c. |
---|
| 954 | */ |
---|
| 955 | |
---|
| 956 | static void makecrc(void) |
---|
| 957 | { |
---|
| 958 | /* Not copyrighted 1990 Mark Adler */ |
---|
| 959 | |
---|
| 960 | unsigned long c; /* crc shift register */ |
---|
| 961 | unsigned long e; /* polynomial exclusive-or pattern */ |
---|
| 962 | int i; /* counter for all possible eight bit values */ |
---|
| 963 | int k; /* byte being shifted into crc apparatus */ |
---|
| 964 | |
---|
| 965 | /* terms of polynomial defining this crc (except x^32): */ |
---|
| 966 | static const int p[] = { 0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26 }; |
---|
| 967 | |
---|
| 968 | /* Make exclusive-or pattern from polynomial */ |
---|
| 969 | e = 0; |
---|
| 970 | for (i = 0; i < sizeof(p) / sizeof(int); i++) |
---|
| 971 | e |= 1L << (31 - p[i]); |
---|
| 972 | |
---|
| 973 | crc_32_tab[0] = 0; |
---|
| 974 | |
---|
| 975 | for (i = 1; i < 256; i++) { |
---|
| 976 | c = 0; |
---|
| 977 | for (k = i | 256; k != 1; k >>= 1) { |
---|
| 978 | c = c & 1 ? (c >> 1) ^ e : c >> 1; |
---|
| 979 | if (k & 1) |
---|
| 980 | c ^= e; |
---|
| 981 | } |
---|
| 982 | crc_32_tab[i] = c; |
---|
| 983 | } |
---|
| 984 | |
---|
| 985 | /* this is initialized here so this code could reside in ROM */ |
---|
| 986 | crc = (ulg) 0xffffffffL; /* shift register contents */ |
---|
| 987 | } |
---|
| 988 | |
---|
| 989 | /* gzip flag byte */ |
---|
| 990 | #define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */ |
---|
| 991 | #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */ |
---|
| 992 | #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */ |
---|
| 993 | #define ORIG_NAME 0x08 /* bit 3 set: original file name present */ |
---|
| 994 | #define COMMENT 0x10 /* bit 4 set: file comment present */ |
---|
| 995 | #define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */ |
---|
| 996 | #define RESERVED 0xC0 /* bit 6,7: reserved */ |
---|
| 997 | |
---|
| 998 | /* |
---|
| 999 | * Do the uncompression! |
---|
| 1000 | */ |
---|
| 1001 | int gunzip(void) |
---|
| 1002 | { |
---|
| 1003 | int res; |
---|
| 1004 | |
---|
| 1005 | /* Decompress */ |
---|
| 1006 | if ((res = inflate())) { |
---|
| 1007 | switch (res) { |
---|
| 1008 | case 0: |
---|
| 1009 | break; |
---|
| 1010 | case 1: |
---|
| 1011 | error("invalid compressed format (err=1)"); |
---|
| 1012 | break; |
---|
| 1013 | case 2: |
---|
| 1014 | error("invalid compressed format (err=2)"); |
---|
| 1015 | break; |
---|
| 1016 | case 3: |
---|
| 1017 | error("out of memory"); |
---|
| 1018 | break; |
---|
| 1019 | default: |
---|
| 1020 | error("invalid compressed format (other)"); |
---|
| 1021 | } |
---|
| 1022 | return -1; |
---|
| 1023 | } |
---|
| 1024 | |
---|
| 1025 | return 0; |
---|
| 1026 | } |
---|