1 | /* $Id: libdspam_objects.h,v 1.27 2011/07/11 21:29:57 sbajic Exp $ */ |
---|
2 | |
---|
3 | /* |
---|
4 | DSPAM |
---|
5 | COPYRIGHT (C) 2002-2012 DSPAM PROJECT |
---|
6 | |
---|
7 | This program is free software: you can redistribute it and/or modify |
---|
8 | it under the terms of the GNU Affero General Public License as |
---|
9 | published by the Free Software Foundation, either version 3 of the |
---|
10 | License, or (at your option) any later version. |
---|
11 | |
---|
12 | This program is distributed in the hope that it will be useful, |
---|
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
15 | GNU Affero General Public License for more details. |
---|
16 | |
---|
17 | You should have received a copy of the GNU Affero General Public License |
---|
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
---|
19 | |
---|
20 | */ |
---|
21 | |
---|
22 | #ifndef _LIBDSPAM_OBJECTS_H |
---|
23 | # define _LIBDSPAM_OBJECTS_H |
---|
24 | |
---|
25 | #ifdef HAVE_CONFIG_H |
---|
26 | #include <auto-config.h> |
---|
27 | #endif |
---|
28 | |
---|
29 | #include <time.h> |
---|
30 | #include "config.h" |
---|
31 | #include "config_shared.h" |
---|
32 | #include "decode.h" |
---|
33 | |
---|
34 | #if ((defined(__sun__) && defined(__svr4__)) || (defined(__sun) && defined(__SUNPRO_C))) && !defined(u_int32_t) && !defined(__BIT_TYPES_DEFINED__) |
---|
35 | #define __BIT_TYPES_DEFINED__ |
---|
36 | typedef unsigned long long u_int64_t; |
---|
37 | typedef unsigned int u_int32_t; |
---|
38 | typedef unsigned short u_int16_t; |
---|
39 | typedef unsigned char u_int8_t; |
---|
40 | #endif |
---|
41 | |
---|
42 | #ifdef _WIN32 |
---|
43 | typedef unsigned int u_int32_t; |
---|
44 | typedef u_int32_t uid_t; |
---|
45 | #endif |
---|
46 | |
---|
47 | extern void *_drv_handle; /* Handle to storage driver library */ |
---|
48 | |
---|
49 | /* |
---|
50 | * struct dspam_factor - A single determining factor |
---|
51 | * |
---|
52 | * An element containing a determining factor in the dominant calculation of |
---|
53 | * a message. An array of these are returned to the calling application to |
---|
54 | * explain libdspam's final classification decision. |
---|
55 | */ |
---|
56 | |
---|
57 | struct dspam_factor { |
---|
58 | char *token_name; |
---|
59 | float value; |
---|
60 | }; |
---|
61 | |
---|
62 | /* |
---|
63 | * struct _ds_spam_totals - User spam totals |
---|
64 | * |
---|
65 | * Spam totals loaded into the user's filter context upon a call to |
---|
66 | * dspam_init(). This structure represents the user's cumulative statistics. |
---|
67 | * |
---|
68 | * spam_learned, innocent_learned |
---|
69 | * The total number of messages trained on. |
---|
70 | * |
---|
71 | * spam_misclassified, innocent_misclassified |
---|
72 | * The total number of messages that were misclassified by DSPAM, and |
---|
73 | * submitted for retraining. |
---|
74 | * |
---|
75 | * spam_classified, innocent_classified |
---|
76 | * The total number of messages that were classified by DSPAM, but not |
---|
77 | * learned. Used exclusively with Train-on-Error mode. |
---|
78 | * |
---|
79 | * spam_corpusfed, innocent_corpusfed |
---|
80 | * The total number of messages supplied by the end-user for training. |
---|
81 | * |
---|
82 | * NOTE: The ordering of the variables in the structure must remain |
---|
83 | * consistent to ensure backward-compatibility with some storage |
---|
84 | * drivers (such as the Berkeley DB drivers) |
---|
85 | */ |
---|
86 | |
---|
87 | struct _ds_spam_totals |
---|
88 | { |
---|
89 | long spam_learned; |
---|
90 | long innocent_learned; |
---|
91 | long spam_misclassified; |
---|
92 | long innocent_misclassified; |
---|
93 | long spam_corpusfed; |
---|
94 | long innocent_corpusfed; |
---|
95 | long spam_classified; |
---|
96 | long innocent_classified; |
---|
97 | }; |
---|
98 | |
---|
99 | /* |
---|
100 | * struct _ds_spam_stat - Statistics for a single token: |
---|
101 | * |
---|
102 | * probability |
---|
103 | * The calculated probability of the token based on the active pvalue |
---|
104 | * algorithm (selected at configure-time). |
---|
105 | * |
---|
106 | * spam_hits, innocent_hits |
---|
107 | * The total number of times the token has appeared in each class of |
---|
108 | * message. If Train-on-Error or Train-until-Mature training modes are |
---|
109 | * employed, these values will not necessarily be updated for every |
---|
110 | * message. |
---|
111 | * |
---|
112 | * status |
---|
113 | * TST_DISK Value was loaded from the storage interface |
---|
114 | * TST_DIRTY Statistic is dirty (not written to disk since last modified) |
---|
115 | */ |
---|
116 | |
---|
117 | typedef struct _ds_spam_stat |
---|
118 | { |
---|
119 | double probability; |
---|
120 | long spam_hits; |
---|
121 | long innocent_hits; |
---|
122 | char status; |
---|
123 | unsigned long offset; |
---|
124 | } *ds_spam_stat_t; |
---|
125 | |
---|
126 | /* |
---|
127 | * struct _ds_spam_signature - A historical classification signature |
---|
128 | * |
---|
129 | * A binary representation of the original training instance. The spam |
---|
130 | * signature contains all the metadata used in the original decision |
---|
131 | * about the message, so that a 1:1 retraining can take place if the |
---|
132 | * message is submitted for retraining (e.g. was misclassified). The |
---|
133 | * signature contains a series of _ds_signature_token structures, which |
---|
134 | * house the original set of tokens used and their frequency counts in |
---|
135 | * the message. A spam signature is a temporary piece of data that is |
---|
136 | * usually purged from disk after a short period of time. |
---|
137 | */ |
---|
138 | |
---|
139 | struct _ds_spam_signature |
---|
140 | { |
---|
141 | void *data; |
---|
142 | unsigned long length; |
---|
143 | }; |
---|
144 | |
---|
145 | /* |
---|
146 | * struct _ds_signature_token - An entry in the classification signature |
---|
147 | * |
---|
148 | * A signature token is a single entry in the binary _ds_spam_signature |
---|
149 | * data blob, representing a single data point from the original |
---|
150 | * training instance. |
---|
151 | * |
---|
152 | * token |
---|
153 | * The checksum of the original token in the message |
---|
154 | * |
---|
155 | * frequency |
---|
156 | * The token's frequency in the original message |
---|
157 | */ |
---|
158 | |
---|
159 | struct _ds_signature_token |
---|
160 | { |
---|
161 | unsigned long long token; |
---|
162 | unsigned char frequency; |
---|
163 | }; |
---|
164 | |
---|
165 | /* |
---|
166 | * struct _ds_config - libdspam attributes configuration |
---|
167 | * |
---|
168 | * Each classification context may have an attributes configuration |
---|
169 | * which is read by various components of libdspam. This structure |
---|
170 | * contains an array of attributes and the size of the array. |
---|
171 | */ |
---|
172 | |
---|
173 | struct _ds_config |
---|
174 | { |
---|
175 | config_t attributes; |
---|
176 | long size; |
---|
177 | }; |
---|
178 | |
---|
179 | /* |
---|
180 | * DSPAM_CTX - The DSPAM Classification Context |
---|
181 | * |
---|
182 | * A classification context is attached directly to a filter instance |
---|
183 | * and supplies the entire context for the filter instance to operate |
---|
184 | * under. This includes the user and group, operational flags, |
---|
185 | * training mode, and the message being operated on. The filter |
---|
186 | * instance also sets specific output variables within the context |
---|
187 | * such as the result of a classification, confidence level, and |
---|
188 | * etcetera. |
---|
189 | * |
---|
190 | * username, group (input) |
---|
191 | * The current username and group that is being operated on. |
---|
192 | * |
---|
193 | * totals (output) |
---|
194 | * The set of statistics loaded when dspam_init() is called. |
---|
195 | * |
---|
196 | * signature (input, output) |
---|
197 | * The signature represents a DSPAM signature, and can be supplied |
---|
198 | * as an input variable for retraining (e.g. in the event of a |
---|
199 | * misclassification) or used as an output variable to store a |
---|
200 | * signature generated by the filter instance during normal |
---|
201 | * classification. |
---|
202 | * |
---|
203 | * message (input) |
---|
204 | * The message being operated on, post-actualization. This can be |
---|
205 | * left NULL, and libdspam will automatically actualize the message |
---|
206 | * |
---|
207 | * probability (output) |
---|
208 | * The probability of the resulting operation. This is generally a |
---|
209 | * floating point number between 0 and 1, 1 being the highest |
---|
210 | * probability of high order classification. |
---|
211 | * |
---|
212 | * result (output) |
---|
213 | * The final result of the requested operation. This is generally |
---|
214 | * either DSR_ISSPAM, DSR_ISINNOCENT, or DSR_WHITELISTED. |
---|
215 | * |
---|
216 | * confidence (output) |
---|
217 | * The confidence that the filter has in its returned result. |
---|
218 | * NOTE: Confidence is not always supported, and may be zero. |
---|
219 | * |
---|
220 | * operating_mode (input) |
---|
221 | * Sets the operating mode of the filter instance. This can be one |
---|
222 | * of the following: |
---|
223 | * |
---|
224 | * DSM_PROCESS Classify and learn the supplied message using |
---|
225 | * whatever training mode is specified |
---|
226 | * |
---|
227 | * DSM_CLASSIFY Classify the supplied message only; do not |
---|
228 | * learn or update any counters. |
---|
229 | * |
---|
230 | * DSM_TOOLS Identifies that the calling function is from |
---|
231 | * a utility, and no operation will be requested. |
---|
232 | * |
---|
233 | * training_mode (input) |
---|
234 | * The training mode sets the type of training the filter instance |
---|
235 | * should apply to the process. This can be one of: |
---|
236 | * |
---|
237 | * DST_TEFT Train-on-Everything |
---|
238 | * Trains every single message processed |
---|
239 | * |
---|
240 | * DST_TOE Train-on-Error |
---|
241 | * Trains only on a misclassification or |
---|
242 | * corpus-fed message. |
---|
243 | * |
---|
244 | * DST_TUM Train-until-Mature |
---|
245 | * Trains individual tokens based on the |
---|
246 | * maturity of the user's dictionary |
---|
247 | * |
---|
248 | * DST_NOTRAIN No Training |
---|
249 | * Process the message but do not perform |
---|
250 | * any training. |
---|
251 | * training_buffer (input) |
---|
252 | * Sets the amount of training-loop buffering. This number is a |
---|
253 | * range from 0-10 and changes the amount of token sedation used |
---|
254 | * during the training loop. The higher the number, the more token |
---|
255 | * statistics are watered down during initial training to prevent |
---|
256 | * false positives. Setting this value to zero results in no |
---|
257 | * sedation being performed. |
---|
258 | * |
---|
259 | * flags (input) |
---|
260 | * Applies different fine-tuning behavior to the context: |
---|
261 | * |
---|
262 | * DSF_NOISE Apply Bayesian Noise Reduction logic |
---|
263 | * DSF_SIGNATURE Signature is provided/requested |
---|
264 | * DSF_WHITELIST Use automatic whitelisting logic |
---|
265 | * DSF_MERGED Merge user/group data in memory |
---|
266 | * DSF_UNLEARN Unlearn the message |
---|
267 | * DSF_BIAS Assign processor bias to unknown tokens |
---|
268 | * |
---|
269 | * tokenizer (input) |
---|
270 | * Specifies which tokenizer to use |
---|
271 | * |
---|
272 | * DSZ_WORD Use WORD (uniGram) tokenizer |
---|
273 | * DSZ_CHAIN Use CHAIN (biGram) tokenizer |
---|
274 | * DSZ_SBPH Use SBPH (Sparse Binary Polynomial Hashing) tokenizer |
---|
275 | * DSZ_OSB Use OSB (Orthogonal Sparse biGram) tokenizer |
---|
276 | * |
---|
277 | * algorithms (input) |
---|
278 | * Optional API to override the default algorithms. This value is set |
---|
279 | * with the default compiled values whenever dspam_create() is called. |
---|
280 | * |
---|
281 | * DSA_GRAHAM Graham-Bayesian |
---|
282 | * DSA_BURTON Burton-Bayesian |
---|
283 | * DSA_ROBINSON Robinson's Geometric Mean Test |
---|
284 | * DSA_CHI_SQUARE Fisher-Robinson's Chi-Square |
---|
285 | * DSA_NAIVE Naive-Bayesian |
---|
286 | * |
---|
287 | * P-Value Computations: |
---|
288 | * |
---|
289 | * DSP_ROBINSON Robinson's Technique |
---|
290 | * DSP_GRAHAM Graham's Technique |
---|
291 | * DSP_MARKOV Markov Weighted Technique |
---|
292 | * |
---|
293 | * locked (output) |
---|
294 | * Identifies that the user's storage is presently locked |
---|
295 | */ |
---|
296 | |
---|
297 | typedef struct |
---|
298 | { |
---|
299 | struct _ds_spam_totals totals; |
---|
300 | struct _ds_spam_signature * signature; |
---|
301 | struct _ds_message * message; |
---|
302 | struct _ds_config * config; |
---|
303 | |
---|
304 | char *username; |
---|
305 | char *group; |
---|
306 | char *home; /* DSPAM Home */ |
---|
307 | int operating_mode; /* DSM_ */ |
---|
308 | int training_mode; /* DST_ */ |
---|
309 | int training_buffer; /* 0-10 */ |
---|
310 | int wh_threshold; /* Whitelisting Threshold (default 10) */ |
---|
311 | int classification; /* DSR_ */ |
---|
312 | int source; /* DSS_ */ |
---|
313 | int learned; /* Did we actually learn something? */ |
---|
314 | int tokenizer; /* DSZ_ */ |
---|
315 | u_int32_t flags; |
---|
316 | u_int32_t algorithms; |
---|
317 | |
---|
318 | int result; |
---|
319 | char class[32]; |
---|
320 | float probability; |
---|
321 | float confidence; |
---|
322 | |
---|
323 | int locked; |
---|
324 | void * storage; |
---|
325 | time_t _process_start; |
---|
326 | int _sig_provided; |
---|
327 | |
---|
328 | struct nt * factors; |
---|
329 | |
---|
330 | } DSPAM_CTX; |
---|
331 | |
---|
332 | /* Processing Flags */ |
---|
333 | |
---|
334 | #define DSF_SIGNATURE 0x02 |
---|
335 | #define DSF_BIAS 0x04 |
---|
336 | #define DSF_NOISE 0x08 |
---|
337 | #define DSF_WHITELIST 0x10 |
---|
338 | #define DSF_MERGED 0x20 |
---|
339 | #define DSF_UNLEARN 0x80 |
---|
340 | |
---|
341 | /* Tokenizers */ |
---|
342 | |
---|
343 | #define DSZ_WORD 0x01 |
---|
344 | #define DSZ_CHAIN 0x02 |
---|
345 | #define DSZ_SBPH 0x03 |
---|
346 | #define DSZ_OSB 0x04 |
---|
347 | |
---|
348 | /* Algorithms */ |
---|
349 | |
---|
350 | #define DSA_GRAHAM 0x01 |
---|
351 | #define DSA_BURTON 0x02 |
---|
352 | #define DSA_ROBINSON 0x04 |
---|
353 | #define DSA_CHI_SQUARE 0x08 |
---|
354 | #define DSP_ROBINSON 0x10 |
---|
355 | #define DSP_GRAHAM 0x20 |
---|
356 | #define DSP_MARKOV 0x40 |
---|
357 | #define DSA_NAIVE 0x80 |
---|
358 | |
---|
359 | /* Operating Modes */ |
---|
360 | |
---|
361 | #define DSM_PROCESS 0x00 |
---|
362 | #define DSM_TOOLS 0x01 |
---|
363 | #define DSM_CLASSIFY 0x02 |
---|
364 | #define DSM_NONE 0xFF |
---|
365 | |
---|
366 | /* Training Modes */ |
---|
367 | |
---|
368 | #define DST_TEFT 0x00 |
---|
369 | #define DST_TOE 0x01 |
---|
370 | #define DST_TUM 0x02 |
---|
371 | #define DST_NOTRAIN 0xFE |
---|
372 | |
---|
373 | /* Classification Results */ |
---|
374 | |
---|
375 | #define DSR_ISSPAM 0x01 |
---|
376 | #define DSR_ISINNOCENT 0x02 |
---|
377 | #define DSR_NONE 0xFF |
---|
378 | |
---|
379 | /* Classification Sources */ |
---|
380 | |
---|
381 | #define DSS_ERROR 0x00 /* Retraining an error */ |
---|
382 | #define DSS_CORPUS 0x01 /* Training a message from corpus */ |
---|
383 | #define DSS_INOCULATION 0x02 /* Message is an inoculation */ |
---|
384 | #define DSS_NONE 0xFF /* Standard inbound processing */ |
---|
385 | |
---|
386 | /* Statuses for token-status bit */ |
---|
387 | #define TST_DISK 0x01 |
---|
388 | #define TST_DIRTY 0x02 |
---|
389 | |
---|
390 | /* Token Types */ |
---|
391 | #define DTT_DEFAULT 0x00 |
---|
392 | #define DTT_BNR 0x01 |
---|
393 | |
---|
394 | #define DSP_UNCALCULATED -1 |
---|
395 | |
---|
396 | #define BURTON_WINDOW_SIZE 27 |
---|
397 | |
---|
398 | #endif /* _LIBDSPAM_OBJECTS */ |
---|