PF RING User Guide

Linux High Speed Packet Capture

Version 6.5.0
December 2016

© 2004-16 ntop.org

PF_RING User’s Guide v.6.5.0

1.Table of Contents

1.7AbIE OF CONTENTS ... 2
2. INHOAUCHON ..ot 4
2.0 WRGES INEW?......ooee ettt sttt 4
S.WeEICOME O PF_RING ...t 6
S TPACKET FIEIING ...t 6
B2 PACKET JOUIMBY ...t s s s s 7
3.3 PACKET CIUSIEIING ...ttt 7
A PF_RING DIIVEIS ...ttt s e s et nenenes 9
ATPF_RING ZC....ce ettt bt a et s b e et et s e b e s e st s b et e se e s e b e s et sebetenenas 9
5.PF_RING INSIQIGHON ..o 1
5.1. Linux Kernel Module INSTAIIGHON.............cooiiiieeeccece e n
6. RUNNING PF_RING ..ottt 12
B.1. ZC DIIVEIS ...ttt 12
6.2. Configuring a PF_RING Deb/RPM PACKAGEcovuveiiiiieiiieiie e 13
6.3. Checking PF_RING Device CONfIQUITHONcoveiiveiiicicieiie e 13
6.4. Libpfring and Libpcap INSTAIGHONoccoiiiieiieee s 14
6.5. APPlICAHON EXAMPIES ..o 14
6.6. PF_RING AAIIONGl MOAUIES ..ot 15
6.7. PF_RING ntopdump: A Wireshark Extcap Compatible TOOlccocoieieieieieeee e 16
7. PF_RING for Application DEVEIOPETS............c.coviieieiieiiieieieeie s 19
T TREPF_RING APttt s et s s saeaesenas 19
7.2 REIUIMN COUES ...t s st 19
7.3. PF_RING Device NAME CONVENTION ..ottt 19
7.4. PF_RING PaCket REFIECHON ..o 20
7.5. PF_RING PACKEE FIHEIINGecvveece et 20

PF_RING User’s Guide v.6.5.0

7.6. PF_RING IN-NIC PACKE! FIHEING.......covvieceeeeeeeeeeceeeeeeee et 20
8. PF_RING ZC Device Drivers On Virtual MAchingsccccoeeeviviiiiiccceeeee, 21
8.1. BIOS CONfIQUITHION ... 21
8.2 VMware ESX CONIGUITHONc.veieiieiieeicee e 22
8.3 KVIM CONFIGUIGHON ...t 25

PF_RING User’s Guide v.6.5.0

2. Intfroduction

PF_RING is a high speed packet capture library that turns a commodity PC into an efficient and cheap
network measurement box suitable for both packet and active traffic analysis and manipulation.
Moreover, PF_RING opens totally new markets as it enables the creation of efficient application such as
traffic balancers or packet filters in a matter of lines of codes.

This manual is divided in two parts:

¢ PF_RING installation and configuration.
o PF_RING SDK.

2.1. What's New?

PF_RING 6.5 Changelog:
e Provided ntopdump, a Wireshark extcap compatible tool

PF_RING 6.4 Changelog:

» PF_RING Library
o Improved Myricom support, new naming scheme fo improve usability
¢ Improved Napatech support, 100G support
e Improved Accolade support
¢ New Invea-Tech support
o New AP pfring_get_metadata to read ZC metadata
o New pfring_get_interface_speed API
o New API pfring_version_noring|)
o C++ wrapper improvements
¢ Removed DNA legacy

» ZC Library
o New AP pfring_zc_set_device_proc_stats to write /proc stats per device
o New API pfring_zc_set_device_app_name to write the application name under /proc
o New AP pfring_zc_get_cluster_id to get the cluster ID from a queue
o New AP pfring_zc_check_device_license for reading interface license status
o New API pfring_zc_get_queue_settings to read buffer len and metadata len from queue
o New AP pfring_zc_get_queue_speed to read the link speed

o New pfring_zc_open_device flag PF_RING_ZC_DEVICE_NOT_PROMISC to open the device without
setting promisc mode

o New packet metadata flags, including IP/L4 checksum (when available from card offloads)
o Improved pfring_zc_builtin_gtp_hash

» PF_RING-aware Libpcap/Tcpdump
o New libpcap v.1.7.4
e New tcpdump v.4.7.4

o Libnpcap support to let libpcap-based applications (i.e. fcpdump) read compressed .npcap files
produced by n2disk

¢ Native nanosecond timestamps support
o Tcpdump patch to close the pcap handle in case of errors (this avoids breaking ZC queues)

PF_RING User’s Guide v.6.5.0

» PF_RING kernel module
o Fixed BPF support on kernel 4.4 x

e Fixed RSS support on Centos 6 (it was reporting the wrong number of queues, affecting RSS
rehash)

e Reworked promisc support: handling promisc through the pf_ring kernel module in order to
automatically remove it even when applications drop privileges

¢ VLAN ID fix in case of vlan stripping offload enabled (it was including priority bits)

» Drivers
e New i40e-zc v.1.5.18
e New fm10k-zc v.0.20.1
e Support for latest Ubuntu 16, RHEL 6.8, Centos 7
o Fixed i40e-zc initialisation failures due to promisc reset
o Fixed i40e-zc ‘transmit queue 0 timed out’
o Fixed €1000e-zc memory leak

» Examples
o Added ability to reforge MAC/IP also when reading packets from pcap file/stdin in pfsend
o Added -f option for replaying packets from pcap file in zsend
¢ Added -o option to pfsend to specify an offset to be used with -b
o Added -r option fo use egress interfaces instead of queues in zbalance_ipc

» Snort DAQ
o Fixed DAQ-ZC buffer leak in IPC mode
e Fixed DAQ_DP_ADD_DC support
o Fixed support for DAQ < 2.0.6

PF_RING User’s Guide v.6.5.0

3.Welcome to PF_RING

Monitoring Monitoring Monitoring
Application Application Application

!

PF_RING User-Space Library

Userland

T | g

4 A

{ PERING | | PERING :
GRS e

T

Ethernet Device Driver

Kernel

PF_RING's architecture is depicted in the figure below.
The main building blocks are:

¢ The accelerated kernel module that provides low-level packet copying into the PF_RING rings.

e The user-space PF_RING SDK that provides transparent PF_RING-support to user-space
applications.

o Specialised PF_RING-aware drivers (optional) that allow to further enhance packet capture by
efficiently copying packets from the driver to PF_RING without passing through the kernel. Please
note that PF_RING can operate with any NIC driver, but for maximum performance it is necessary to
use these specialised drivers that can be found into the drivers/ directory part of the PF_RING
distribution.

PF_RING implements a new socket type (named PF_RING) on which user-space applications can speak
with the PF_RING kernel module. Applications can obtain a PF_RING handle, and issue API calls that are
described later in this manual. A handle can be bound to a:

e Physical network interface.

¢ ARX queue, only on multi-queue network adapters.

o To the ‘any’ virtual interface that means packets received/sent on all system interfaces are accepted.

As specified above, packets are read from a memory ring allocated at creation time. Incoming packets
are copied by the kernel module to the ring, and read by the user-space applications. No per-packet
memory allocation/deallocation is performed. Once a packet has been read from the ring, the space
used in the ring for storing the packet just read will be used for accommodating future packets. This
means that applications willing to keep a packet archive, must store themselves the packets just read as
the PF_RING will not preserve them.

3.1.Packet Filtering

PF_RING supports both legacy BPF filters (i.e. those supported by pcap-based applications such as
tcpdump), and also two additional types of filters (named wildcard and precise filters, depending on the
fact that some or all filter elements are specified) that provide developers a wide choice of opfions. Filters
are evaluated inside the PF_RING module thus in kernel. Some modern adapters such as Intel 82599-
based or Silicom Redirector NICs, support hardware-based filters that are also supported by PF_RING via
specified API calls (e.g. pfring_add_hw_rule). PF_RING filters (except hw filters) can have an action

PF_RING User’s Guide v.6.5.0

specified, for felling to the PF_RING kernel module what action needs to be performed when a given
packet matches the filter. Actions include pass/don‘t pass the filter fo the user space application, stop
evaluating the filter chain, or reflect packet. In PF_RING, packet reflection is the ability to transmit
(unmodified) the packet matching the filter onto a network interface (this except the interface on which
the packet has been received). The whole reflection functionality is implemented inside the PF_RING
kernel module, and the only activity requested to the user-space application is the filter specification
without any further packet processing.

3.2.Packet Journey
The packet journey in PF_RING is quite long before being queued into a PF_RING ring.

Add Packet to PF_RING——————Packet Filtering Packet Received————Parse Packet (up fo layer 4)

Sampling Rate Check Defragment packet (optional)

Queue Packet
on PF_RING

Added the packet to PF_RING
<«—— sockets that potentially match it
(packet and socket device match)

<——PF _RING Reflector CheckSame as above for PF_RING
socket clusters

Back to PF_RING Return control fo the kernel

3.3.Packet Clustering

PF_RING can also increase the performance of packet capture applications by implementing two
mechanisms named balancing and clustering. These mechanisms allow applications, willing to partition
the set of packets to handle, to handle a portion of the whole packet stream while sending all the
remaining packets to the other members of the cluster. This means that different applications opening
PF_RING sockets can bind them to a specific cluster Id (via pfring_set_cluster) for joining the forces and
each analyze a portion of the packets.

(Applica{ion> (Appcahon) (Applica{ion> Application

I |

Clustered Clustered Clustered Clustered
PF_RING PF_RING PF_RING PF_RING
Socket Socket Socket Socket

7

‘ PF_RING ’

The way packets are partitioned across cluster sockets is specified in the cluster policy that can be either
per-flow (i.e. all the packets belonging to the same tuple <proto, ip src/dst, port src/dst>) that is the
default or round-robin. This means that if you select per-flow balancing, all the packets belonging fo the
same flow (i.e. the 5-tuple specified above) will go to the same application, whereas with round-robin all
the apps will receive the same amount of packets but there is no guarantee that packets belonging to
the same queue will be received by a single application. So in one hand per-flow balancing allows you
to preserve the application logic as in this case the application will receive a subset of all packets but this
traffic will be consistent. On the other hand if you have a specific flow that takes most of the traffic, then

PF_RING User’s Guide v.6.5.0

the application that will handle such flow will be over-flooded by packets and thus the traffic will not be
heavily balanced.

PF_RING User’s Guide v.6.5.0

4 PF _RING Drivers

As previously stated, PF_RING can work both on top of standard NIC drivers, or on top of specialised
drivers. The PF_RING kernel module is the same, but based on the drivers being used some functionality
and performance are different.

4.1.PF_RING ZC

For those users who need maximum packet capture speed with 0% CPU utilisation for copying packets
to the host (i.e. the NAPI polling mechanism is not used) it is also possible to use ZC (aka new generation
DNA) drivers, that allows packets to be read directly from the network interface by simultaneously
bypassing both the Linux kernel and the PF_RING module in a zero-copy fashion.

Application Application

PF_RING
Polling

Userland

i mmap

\ H Kernel

Application
Polling

Userland

i DMA

Kernel

\ : PF_RING \ : Commodity NIC
Circular © NIC .‘ \
Buffer % Memory »®
NAPI Map N
.’ polling o) NCNRU
Device Driver Device Driver
Vanilla PF_RING PF_RING with DNA

(Direct NIC Access) driver

In ZC both RX and TX operations are supported. As the kernel is bypassed, some PF_RING functionality
are missing, and they include:

o In kernel packet filtering (BPF and PF_RING filters)
o PF_RING kernel plugins have no effect.

These drivers, available in PF_RING/drivers/, are standard drivers with support for the PF_RING ZC
library. They can be used as standard kernel drivers or in zero-copy kernel-bypass mode (using the
PF_RING ZC library) adding the prefix "zc:" to the interface name.

Once installed, the drivers operate as standard Linux drivers where you can do normal networking (e.g.
ping or SSH). If you open a device in zero copy (e.g. pfcount -i zc:eth1) the device becomes unavailable to
standard networking as it is accessed in zero-copy through kernel bypass, as happened with the
predecessor DNA. Once the application accessing the device is closed, standard networking activities
can take place again. An interface in ZC mode provides the same performance as DNA.

PF_RING ZC (Zero Copy) is a flexible packet processing framework that allows you to achieve 1/10 Gbit
line-rate packet processing (both RX and TX) at any packet size. It implements zero-copy operations
including patterns for inter-process and inter-VM (KVM) communications. It can be considered as the
successor of DNA/LibZero that offers a single and consistent APl implementing simple building blocks
(queue, worker and pool) that can be used from threads, applications and virtual machines.

The following example shows how to create an aggregator+balancer application in 6 lines of code.

PF_RING User’s Guide v.6.5.0

zc = pfring zc_create_cluster(ID, MTU, MAX BUFFERS, NULL);
for (i = 0; i < num devices; i++)

inzq[i] = pfring zc open device(zc, devices[i], rx only);
for (i = 0; i < num_slaves; i++)

outzq[i] = pfring zc_create queue(zc, QUEUE_LEN);

A U W N

zw = pfring zc_run balancer(inzg, outzg, num devices,
num_slaves, NULL, NULL, !wait for packet, core id);

PF_RING ZC driver, once installed, operate as standard Linux drivers where you can do normal
networking (e.g. ping or SSH). If you open a device in zero copy (e.g. pfcount -i zc:ethl) the device
becomes unavailable to standard networking as it is accessed in zero-copy through kernel bypass, as
happened with the predecessor DNA. Once the application accessing the device is closed, standard
networking acfivities can take place again.

PF_RING ZC allows you to forward (both RX and TX) packets in zero-copy for a KVM Virtual Machine
without using techniques such as PCle passthrough. Thanks to the dynamic creation of ZC devices on
VMs, you can capture/send traffic in zero-copy from your VM without having to patch the KVM code, or
start KVM after your ZC devices have been created. In essence now you can do 10 Gbit line rate to your
KVM using the same command you would use on a physical host, without changing a single line of
code.

In PF_RING ZC you can use the zero-copy framework even with non-PF_RING aware drivers. This means
that you can dispatch, process, originate, and inject packets into the zero-copy framework even though
they have not been originated from ZC devices. Once the packet has been copied (one-copy) to the ZC
world, from then onwards the packet will always be processed in zero-copy during all his lifetime. For
instance the zbalance_ipc demo application can read packet in 1-copy mode from a non-PF_RING
aware device (e.g. a WiFl-device or a Broadcom NIC) and send them inside ZC for performing zero-copy
operations with them.

10

PF_RING User’s Guide v.6.5.0

5. PF_RING Installation

PF_RING can be downloaded in source format from GIT at https://github.com/ntop/PF_RING/ or installed
from packages using Ubuntu/CentOS repositories at http://packages.ntop.org as explained in the
“Configuring a PF_RING Deb/RPM package” section below.

When you download PF_RING you fetch the following components:

o The PF_RING user-space SDK.

¢ An enhanced version of the libpcap library that transparently takes advantage of PF_RING if
installed, or fallback to the standard behavior if not installed.

o The PF_RING kernel module.

¢ PF_RING aware drivers for different chips of various vendors.

The PF_RING source code layout is the following:

¢ Changelog

o LICENSE

o Makefile

o README.FIRST
e doc/

o drivers/

o kernel/

¢ package/

e Userland/

You can compile the entire tree typing make (as normal, non-root, user) from the main directory.

5.1. Linux Kernel Module Installation

If you choose to install from package please read the section “Configuring a PF_RING Deb/RPM
package” below and skip this section.

In order to compile the PF_RING kernel module you need to have the linux kernel headers (or kernel
source) installed.

$ cd <PF_RING PATH>/kernel
$ make
$ make install

Note that:

o the kernel module installation (via make install) requires root capabilifies.
* As of PF_RING 4.x you NO LONGER NEED to patch the linux kernel as in previous PF_RING versions.

1

https://github.com/ntop/PF_RING/
http://packages.ntop.org

PF_RING User’s Guide v.6.5.0

6. Running PF_RING

If you installed from package please read the section “Configuring a PF_RING Deb/RPM package” below
and skip this section.

Before using any PF_RING application the pf_ring kernel module should be loaded (as superuser):

$ insmod <PF RING PATH>/kernel/pf ring.ko [min num slots=x]
[enable tx capture=1|0] [enable ip defrag=1|0] [quick mode=1]|0]

Where:

e min_num_slots
Min number of ring slots (default — 4096).
¢ enable_ix_capture
Set to 1 to capture outgoing packets, set to 0 to disable capture outgoing packets (default —
RX+TX).
¢ enable_ip_defrag
Set to 110 enable IP defragmentation, only rx traffic is defragmented.
e quick_mode
Set to 1o run at full speed but with up to one socket per interface.

Example:

$ cd <PF_RING PATH>/kernel
$ insmod pf ring.ko min num slot=8192 enable tx capture=0 quick mode=1

6.1. ZC Drivers

If you want to achieve line-rate packet capture even at 10 Gigabit, you should use these drivers. ZC
drivers are part of the PF_RING distribution and can be found in “<PF_RING PATH>/drivers/”.

Currently available ZC drivers are:
¢ 21000e

e igb

e ixgbe

e i40e

o fm10k

Please note that:
o the PF_RING kernel module must be loaded before the ZC driver

e in order to correctly configure the device, it is highly recommended to use the load_driver.sh script
provided with the drivers (take a look at the script to fine-tune the configuration)

¢ ZC drivers need hugepages, the load_driver.sh script takes care of hugepages configuration

If you installed from package please read the section “Configuring a PF_RING Deb/RPM package” below
and skip this section.

12

PF_RING User’s Guide v.6.5.0

Example loading PF_RING and the ixgbe-ZC driver:

$ cd <PF_RING PATH>/kernel

$ insmod pf ring.ko

$ cd PF RING/drivers/intel/ixgbe/ixgbe-X.X.X-zc/src
$ make

$./load driver.sh

6.2. Configuring a PF_RING Deb/RPM package

In addition to source code it is possible to install PF_RING using the installation packages provided at
http://packages.ntop.org/.

Once the “pfring” package, and optionally the ZC drivers, is installed following the procedure on the web
page, it is possible to use the init script under /etc/init.d/pf_ring to automate the kernel module and
drivers loading. The init script acts as follows:

1. loads the pf_ring.ko kernel module.
2. scans the folders /etc/pf_ring/zc/{e1000g,igb,ixgbe,i40e,fm10k}/ searching files:

¢ {e1000e,igb,ixgbe,i40e,fm10k}.conf containinig the driver parameters
o {e1000e,igb,ixgbe,i40e,fm10Kk}.start that should be just an empty file

3. loads the drivers whose corresponding {€1000e,igb,ixgbe,i40e,fm10k}.start file is present, unloading
the vanilla driver.

4. configures hugepages if a ZC driver has been loaded, reading the configuration from /etc/pf_ring/
hugepages. Each line (one per CPU) of the configuration file should contain:

node=<NUMA node id> hugepagenumber=<number of pages>

Example of a minimal configuration for a dual-port ixgbe card on a uniprocessor:

mkdir -p /etc/pf ring/zc/ixgbe

echo “RSS=1,1” > /etc/pf ring/zc/ixgbe/ixgbe.conf

touch /etc/pf ring/zc/ixgbe/ixgbe.start

echo “node=0 hugepagenumber=1024" > /etc/pf ring/hugepages

vy U v 0

In order to run the init script, after all the files have been configured:
$ /etc/init.d/pf ring start

6.3. Checking PF_RING Device Configuration
When PF_RING is activated, a new entry /proc/net/pf_ring is created.

1ls /proc/net/pf ring/
dev/ info ©plugins info stats/

cat /proc/net/pf ring/info
PF RING Version : 6.4.1

13

PF_RING User’s Guide v.6.5.0

Total rings : 0

Standard (non ZC) Options

Ring slots : 4096

Slot version : 16

Capture TX : Yes [RX+TX]
IP Defragment : No

Socket Mode : Standard
Total plugins : 0

Cluster Fragment Queue : 0

Cluster Fragment Discard : 0

6.4. Libpfring and Libpcap Installation

Both libpfring (userspace PF_RING library) and libpcap are distributed in source format. They can be
compiled as follows:

cd <PF _RING PATH>/userland/lib
./configure

make

sudo make install

cd ../libpcap

./configure

make

Uy Uy Uy Uy Oy D

Note that the lib is reentrant hence it's necessary to link your PF_RING-enabled applications also against
the -Ipthread library.

IMPORTANT

Legacy statically-linked pcap-based applications need to be recompiled against the
new PF_RING-enabled libpcap.a in order to take advantage of PF_RING. Do not
expect fo use PF_RING without recompiling your existing application.

6.5. Application Examples

If you are new to PF_RING, you can start with some examples. The userland/examples folder is rich of
ready-to-use PF_RING applications:

$ cd <PF_RING PATH>/userland/examples

$ 1s *.c

alldevs.c pfcount 82599.c pflatency.c pfwrite.c
pcap2nspcap.c pfcount.c pfsend.c preflect.c
pcount.c pfcount multichannel.c pfsystest.c

pfbridge.c pfdump.c pfutils.c

$ make

For instance, pfcount allows you to receive packets printing some statistics:

14

PF_RING User’s Guide v.6.5.0

./pfcount -i zc:ethl
Using PF RING v.6.4.1

Absolute Stats: [64415543 pkts rcvd] [0 pkts dropped]
Total Pkts=64415543/Dropped=0.0 %

64'415'543 pkts - 5'410'905'612 bytes [4'293'748.94 pkt/sec - 2'885.39
Mbit/sec]

Actual Stats: 14214472 pkts [1'000.03 ms][14'214'017.15 pps/9.55 Gbps]

Another example is pfsend, which allows you to send packets (synthetic packets, or optionally a .pcap
file can be used) at a specific rate:

./pfsend -f 64byte packets.pcap -n 0 -i zc:ethl -r 5

TX rate: [current 7'508'239.00 pps/5.05 Gbps][average 7'508'239.00 pps/
5.05 Gbps] [total 7'508'239.00 pkts]

6.6. PF_RING Additional Modules

As of version 4.7, the PF_RING library has a new modular architecture, making it possible to use
additional components other than the standard PF_RING kernel module. These components are
compiled inside the library according to the supports detected by the configure script.

Currently, the set of additional modules includes:

¢ DAG module.
This module adds native support for Endace DAG cards in PF_RING. In order to use this module it's
necessary to have the dag library (4.x or lafer) installed and to link your PF_RING-enabled
application using the -Idag flag.

¢ ZC module.
This module can be used to open a device in ZC mode, if you own a supported card and a
PF_RING-aware driver with ZC support. ZC dramatically increases the packet capture and
transmission speed as the kernel layer is bypassed and applications can communicate directly

with the card.
Currently these ZC drivers are available:
» €1000e
» igb
» ixgbe
» i40e
» fml0k

The drivers are part of the PF_RING distribution and can be found in drivers/ identified by the suffix
‘-zc’. With all the drivers you can achieve wire rate at any packet size, both for RX and TX. In order
to open a device in ZC mode you should use the “zc:” prefix: “zc:ethX”.

Note that in case of TX, the transmission speed is limited by the RX performance. This is because

when the receiver cannot keep-up with the capture speed, the ethernet NIC sends ethernet PAUSE
frames back to the sender to slow it down. If you want to ignore these frames and thus send at full

15

PF_RING User’s Guide v.6.5.0

speed, you need to disable autonegotiation and ignore them (ethtool -A ethX autoneg off rx off 1x

off).

o Link Aggregation (‘multi’) module.
This module can be used to aggregate multiple interfaces in order to capture packets from all of
them opening a single PF_RING socket. For example it is possible to open a ring with device name
“mulfi:ethX;ethY;ethZ".

o Linux TCP/IP Stack injection (“stack’) module.
This module can be used to inject/capture packets to/from the Linux TCP/IP Stack, simulating the
arrival/sending of those packets on an interface. The application has to open a ring by using as
device name “stack:ethX” where ethX is the interface bound to the packets injected into the stack.
In order to inject a packet to the stack pfring_send|() has to be used, in order to capture outgoing
packets pfring_recv() has fo be used.

6.7. PF_RING ntopdump: A Wireshark Extcap Compatible Tool

PF_RING provides ntopdump, a tool that implements the Wireshark extcap interface. The extcap
interface is a Wireshark plugin interface that allows external binaries to act as capture interfaces directly
in Wireshark. By implementing the extcap interface, ntopdump is able capture from a PF_RING interface,
delivering the captured packets directly to Wireshark.

@ N\ About Wireshark

Wireshark ~ Authors | Folders | Plugins = Keyboard Shortcuts = License

Name Location Typical Files

"File" dialogs capture files

Temp ftmp untitled capture files

Personal configuration /home/simone/.config/wireshark/ dfilters, preferences, ethers, ...
Global configuration Jusr/share/wireshark dfilters, preferences, manuf, ...
System letc ethers, ipxnets

Program Jusr/bin program files

Personal Plugins /home/simone/.config/wireshark/plugins dissector plugins

Global Plugins fusr/lib/x86 64-linu...eshark/plugins/2.0.2 dissector plugins

GeolP path Jusr/share/GeolP GeolP database search path
Extcap path fusr/lib/x86 64-lin...u/wireshark/extcap/ Extcap Plugins search path

oK |

16

PF_RING User’s Guide v.6.5.0

In order for Wireshark to use it, ntopdump must be placed under the Wireshark extcap lookup folder.
The path of that folder can be determined by selecting “Folders” tab of the Wireshark “Help”->"About”
menu. Packaged versions of PF_RING will automatically place ntopdump executable in the right place.

Users who build PF_RING from sources should manually place it in the extract lookup folder.

Starting Wireshark with the ntopdump binary in place, will yield to new entries in the interfaces list,
namely ntopdump-interface and ntopdump-timeline. The former is the actual entry that has
to be selected in order to capture from PF_RING interfaces. The lafter is used to read pcap files from the

traffic recorder n2disk and falls outside the scope of this manual.

(] @ |X| The Wireshark Network Analyzer
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

A = ® ™ X € =

(MTApply a display filter ... <Ctrl/> ~| Expression...

+
|

[l

Welcome to Wireshark

Capture

...using this filter: ([[Enter a capture filter -]

macvtap0
nto
napatech0
timeline0
eml
ethl
macvtapl
em2
eth2
macvtap2
macvtap3
macvtap4
macvtap5
macvtap6
any
Loopback:
virbr0
virbr0-nic
p4pl
pap2
nflog
nfqueue
usbmonl
usbmon2
usbmon3
usbmon4
@ ntop interface capture: ntop-interface
@ ntop timeline capture: ntop-timeline

o]

LI rrrrrrererefFrrgalirill e

Learn
User's Guide - Wiki - Questions and Answers ‘- Mailing Lists

You are running Wireshark 2.0.2 (SVN Rev Unknown from unknown).

© 7 Ready to load or capture No Packets Profile: Default

+

A small wheel on the left of the entry name allows to specify the capture settings, including the interface
name (e.g., anic:0) and the BPF filters that PF_RING will try to inject as deep as possible, possibly

reaching the hardware (BPF filters input field is only available in recent Wireshark versions).

17

PF_RING User’s Guide v.6.5.0

(] X| Wireshark - Extcap Interface Options: ntop interface...

The interface name |anic:0

| Start Close Help

Once the inferface name has been specified, a double click on the entry will open the familiar Wireshark
packets window and, if everything has been set up properly, packets should start flowing on that
window.

18

PF_RING User’s Guide v.6.5.0

7. PF_RING for Application Developers

Conceptually PF_RING is a simple yet powerful technology that enables developers to create high-speed
traffic monitor and manipulation applications in a small amount of time. This is because PF_RING shields
the developer from inner kernel details that are handled by a library and kernel driver. This way
developers can dramatically save development time focusing on the application they are developing
without paying attention to the way packets are sent and received.

This chapter covers:

o The PF_RING API overview.
o Extensions to the libpcap library for supporting legacy applications.

Please refer to the doxygen documentation (pfring.h header file) for functions descriptions.

7.1. The PF_RING API

The PF_RING internal data structures should be hidden to the user who can manipulate packets and
devices only by means of the available API defined in the include file pfring.h that comes with PF_RING.

7.2. Return Codes

By convention, the library returns negative values for errors and exceptions. Non-negative codes indicate
success. In case return code have another meaning, then they are described inside the corresponding
function.

7.3. PF_RING Device Name Convention

In PF_RING device names are the same as libpcap and ifconfig. So ethO and eth5 are valid names you
can use in PF_RING. You can specify also a virtual device named ‘any’ that instructs PF_RING to capture
packets from all available network devices.

As previously explained, with PF_RING you can use both the drivers that come with your Linux distribution
(thus that are not PF_RING-specific), or some PF_RING-aware drivers (you can find them into the drivers/
directory of PF_RING) that push PF_RING packets much more efficiently than vanilla drivers. If you own a
modern multi-queue NIC (e.g. an Infel 10 Gbit adapter), PF_RING allows you to capture packet from a
specific RX queue (e.g. ethX@Y). Supposing to have an adapter with Z queues, the queue Id Y, must be
in range 0..Z-1. In case you specify a queue that does not exist, no packets will be captured.

As stated in the previous chapter, PF_RING since version 4.7 has a modular architecture. In order to
indicate to the library which module we are willing to use, it is possible to prepend the module name to
the device name, separated by a colon (e.g. zc:ethX@Y for the ZC module, dag:dagX:Y for the dag
module, “multi:ethA@X;ethB@Y;ethC@Z" for the Link Aggregation module.

19

PF_RING User’s Guide v.6.5.0

7.4. PF_RING Packet Reflection

Packet reflection is the ability to bridge packets in kernel without sending them to userspace and back.
You can specify packet reflection inside the filtering rules.
typedef struct {

char reflector device name[REFLECTOR NAME LEN];

} filtering rule;

In the reflector_device_name you need to specify a device name (e.g. ethO) on which packets matching the
filter will be reflected. Make sure NOT to specify as reflection device the same device name on which you
capture packets, as otherwise you will create a packet loop.

7.5. PF_RING Packet Filtering

PF_RING allows filtering packets in two ways: precise (a.k.a. hash filtering) or wildcard filtering. Precise
filtering is used when it is necessary to track a precise 6-tuple connection <vlan Id, protocol, source IP,
source port, destination IP, destination port>. Wildcard filtering is used instead whenever a filter can
have wildcards on some of its fields (e.g. match all UDP packets regardless of their destination). If some
field is set to zero it will not participate in filter calculation.

7.6. PF_RING In-NIC Packet Filtering

Some multi-queue modern network adapters feature “packet steering” capabilities. Using them it is
possible to instruct the hardware NIC to assign selected packets to a specific RX queue. If the specified
queue has an Id that exceeds the maximum queueld, such packet is discarded thus acting as a
hardware firewall filter.

NOTE: Kernel packet filtering is not supported by ZC.

20

PF_RING User’s Guide v.6.5.0

8. PF_RING ZC Device Drivers On Virtual Machines

Section 4 contains a brief introduction to the PF_RING ZC drivers, which allows you to manipulate packets
at 10 Gbit wire speed for any packet size. Thanks to Virtualisation Technologies based on IOMMUs (Infel
VT-d or AMD IOMMU), it is possible to assign a device to a given guest operating system, benefiting
from the PF_RING ZC drivers acceleration within a VM (Virtual Machine). The following sections show
how to configure VMware and KVM (the Linux-native virtualisation system). XEN users can use similar

system configurations.

8.1. BIOS Configuration

First of all, make sure that your motherboard supports the PCl passthrough and check that it is enabled

in your BIOS.

Nctive State Power Management [Bisabled)

Route Port BOh cycles to Pl

USE Functions [Enabled) e s : Move

Legacy USEB Support Autol Enter :Select
o/ -/ :Value
F10:Save
ESC:Exit

| Fl:Geweral Help
F8:Fail Safe Defaunlits
F9:0ptimized Defanlits

w02 .67 (C)Copyr ight 1965-2009, American Megatrends, T

21

PF_RING User’s Guide v.6.5.0

8.2.VMware ESX Configuration

In order to configure the PCl passthrough in VMware, open the vSphere Client and connect to the server.

" n

Select the server, go to “Configuration”, “Advanced Settings”, “Configure Passthrough”.

WM TN g S

W s e Do i Dty N S S

T Wil evn & vl K Sre] moimes Dy B o¥hul Sl on D host

a0 N b Ort Bt
— Ay)
. novenont wans 3 & B (T D N Gl

o o

— N
~ g St e Dt
Cwwn e —"
-l T ©
Dwven © e O
o O Sl T
Puntam we
L

WG Lo NN N St WO SO TR0 ST Y el ST DO
T et b e e e SREG | W WG s e I e R 4 Sever
remied by rere bt bead o e L e s el ek gsd wd way wpan wpte wd

Select the devices you want to assign to the VMs.

Pt (872 rew vevory Amenpees S - —
(D Vs v Yr pmaBvosp »

(759 00 S % | St Campunain § Sy MO0 Sevies. Ot A Fngrons St Pt 4
O 00000 | 10w Coporaon ILIT L Gaget Metimart Lomvn o

(5% 00 bn b | o Corporwmor. 0804 IC) e
O OA 00D | Raslet Sevmniiaiin Ca, LM ETION
O 0110 | Mutun Graons, InC. MGA GU00NN RO

aa;i;li‘.i‘.l-i

o Devr e
2T D & v G Ik A ray ¢ e e
-~ Dwvan N 1Dt wow A - N et Corpur |
o Dme O 0 20
tovor © 1o ey 1) ¢
—c- T = Sleniis T -
Pt » - L
"~]

(=] o= | =

S o
STIRN R R i pe—
n [N 0 500 | i Coponmmon 5 Semen S Senen OGRS ENRONE RO LonaoRer
OFF 0003 | bt Comporsion T P & gt SETA ASC] Gt
“ [0 DOMLO | o Clrpuirutios Cirw M #CI Dagrans S Mot |
OF €1 900 | ow Comonmon RINEES o Ggenn & [usd Pt Smeon (onvecson b Wt T s A
OFF ©100 1 | bt Comprratun KIS 15 Sagant A7 Dnusl Port St v B0 e0s . CRRGUTY § SevOr
(2% DOMLO | b Corpurution e Muimnis #0I Dagrans Sk ot 3 Pt we -y vy wphowe
|| b Compuraur (Wt e At 8155 |
[0 00 304 | DA Corpunatus 5 Sevwey/ J00 Sevwn Ovpust FCI Dagrans S Pt 3 .

OF (4900 | ow Copormmon R Gagene Semeart (orvecson | v [

22

PF_RING User’s Guide v.6.5.0

Reboot the server.

After the reboot, make sure that the VMs where the PCI device will be assigned is in the off state. Open

the VM settings, and click on “Add...” in the “Hardware” tab.

g o '

W o w2 W w0

@ W e]

Q@ M awooke » M LogK P
- vl 0wy - -

[V e
@ oo sowgr -

& Togpy e | e Cemay

"N b b]

- |

R

TH .

L.

o

BT e ———— b

e

Pt O8I0 08

arr -t L

L
et .

* et on S

W e Y
- ™
Qe % 2% W

Select “PCl Device”.

e (00 Vs war A COMOws - it Madwe Mgt

S » o0 et (wtwre e s b e T
-, eprerr
LI ‘-,‘mi_m - -
D O
w“ - — - -—
e
VWAE T OF Sh B0 gD S 00 MM D WM W0 et
Sl Yeve 00N T Ty o SevCH you v T 01
e ot
Ll
(e
DO (e
R oreoke
™ N e
= .
=
e
)
-, I ol T |
1

PF_RING User’s Guide v.6.5.0

Select the device to assign to the VM.

e) e

0 b e Ol 1O N W) e

L AMy 4 R g Srve S D W o
D e A R L]

Boot the VM and install PF_RING with the ZC driver as in the native case.

24

PF_RING User’s Guide v.6.5.0

8.3. KVM Configuration
In order to configure the PCI passthrough with KVM, make sure you have enabled these options in your

kernel:

Bus options (PCl efc.)
[*] Support for DMA Remapping Devices
[*] Enable DMA Remapping Devices
[*] Support for Interrupt Remapping
<*> PCI Stub driver

S cd /usr/src/linux

$ make menuconfig

$ make
$ make modules install

S make install

(or use your distribution-specific way)

25

PF_RING User’s Guide v.6.5.0

Pass “intel_iommu=on" as kernel parameter. For instance, if you are using grub, edit your /boot/grub/

menu.lst this way:
title Linux 2.6.36

root (hd0,0)

kernel /boot/kernel-2.6.36 root=/dev/sda3 intel iommu=on

Unbind the device you want to assign to the VM from the host kernel driver.

$ 1lspci -n

02:00.0 0200: 8086:10fb (rev 01)

$ echo “8086 10fb” > /sys/bus/pci/drivers/pci-stub/new id
$ echo 0000:02:00.0 > /sys/bus/pci/devices/0000:02:00.0/driver/unbind

$ echo 0000:02:00.0 > /sys/bus/pci/drivers/pci-stub/bind

Load KVM and start the VM.

$ modprobe kvm

$ modprobe kvm-intel

$ /usr/local/kvm/bin/gemu-system-x86 64 -m 512 -boot c \
-drive file=virtual machine.img,if=virtio,boot=on \

-device pci-assign,host=02:00.0

Install and run PF_RING with the ZC driver as in the native case.

26

