1 | #define DEBG(x) |
---|
2 | #define DEBG1(x) |
---|
3 | /* inflate.c -- Not copyrighted 1992 by Mark Adler |
---|
4 | version c10p1, 10 January 1993 */ |
---|
5 | |
---|
6 | /* |
---|
7 | * Adapted for booting Linux by Hannu Savolainen 1993 |
---|
8 | * based on gzip-1.0.3 |
---|
9 | * |
---|
10 | * Nicolas Pitre <nico@cam.org>, 1999/04/14 : |
---|
11 | * Little mods for all variable to reside either into rodata or bss segments |
---|
12 | * by marking constant variables with 'const' and initializing all the others |
---|
13 | * at run-time only. This allows for the kernel uncompressor to run |
---|
14 | * directly from Flash or ROM memory on embedded systems. |
---|
15 | * |
---|
16 | * Adapted for MEMDISK by H. Peter Anvin, April 2003 |
---|
17 | */ |
---|
18 | |
---|
19 | /* |
---|
20 | Inflate deflated (PKZIP's method 8 compressed) data. The compression |
---|
21 | method searches for as much of the current string of bytes (up to a |
---|
22 | length of 258) in the previous 32 K bytes. If it doesn't find any |
---|
23 | matches (of at least length 3), it codes the next byte. Otherwise, it |
---|
24 | codes the length of the matched string and its distance backwards from |
---|
25 | the current position. There is a single Huffman code that codes both |
---|
26 | single bytes (called "literals") and match lengths. A second Huffman |
---|
27 | code codes the distance information, which follows a length code. Each |
---|
28 | length or distance code actually represents a base value and a number |
---|
29 | of "extra" (sometimes zero) bits to get to add to the base value. At |
---|
30 | the end of each deflated block is a special end-of-block (EOB) literal/ |
---|
31 | length code. The decoding process is basically: get a literal/length |
---|
32 | code; if EOB then done; if a literal, emit the decoded byte; if a |
---|
33 | length then get the distance and emit the referred-to bytes from the |
---|
34 | sliding window of previously emitted data. |
---|
35 | |
---|
36 | There are (currently) three kinds of inflate blocks: stored, fixed, and |
---|
37 | dynamic. The compressor deals with some chunk of data at a time, and |
---|
38 | decides which method to use on a chunk-by-chunk basis. A chunk might |
---|
39 | typically be 32 K or 64 K. If the chunk is incompressible, then the |
---|
40 | "stored" method is used. In this case, the bytes are simply stored as |
---|
41 | is, eight bits per byte, with none of the above coding. The bytes are |
---|
42 | preceded by a count, since there is no longer an EOB code. |
---|
43 | |
---|
44 | If the data is compressible, then either the fixed or dynamic methods |
---|
45 | are used. In the dynamic method, the compressed data is preceded by |
---|
46 | an encoding of the literal/length and distance Huffman codes that are |
---|
47 | to be used to decode this block. The representation is itself Huffman |
---|
48 | coded, and so is preceded by a description of that code. These code |
---|
49 | descriptions take up a little space, and so for small blocks, there is |
---|
50 | a predefined set of codes, called the fixed codes. The fixed method is |
---|
51 | used if the block codes up smaller that way (usually for quite small |
---|
52 | chunks), otherwise the dynamic method is used. In the latter case, the |
---|
53 | codes are customized to the probabilities in the current block, and so |
---|
54 | can code it much better than the pre-determined fixed codes. |
---|
55 | |
---|
56 | The Huffman codes themselves are decoded using a multi-level table |
---|
57 | lookup, in order to maximize the speed of decoding plus the speed of |
---|
58 | building the decoding tables. See the comments below that precede the |
---|
59 | lbits and dbits tuning parameters. |
---|
60 | */ |
---|
61 | |
---|
62 | /* |
---|
63 | Notes beyond the 1.93a appnote.txt: |
---|
64 | |
---|
65 | 1. Distance pointers never point before the beginning of the output |
---|
66 | stream. |
---|
67 | 2. Distance pointers can point back across blocks, up to 32k away. |
---|
68 | 3. There is an implied maximum of 7 bits for the bit length table and |
---|
69 | 15 bits for the actual data. |
---|
70 | 4. If only one code exists, then it is encoded using one bit. (Zero |
---|
71 | would be more efficient, but perhaps a little confusing.) If two |
---|
72 | codes exist, they are coded using one bit each (0 and 1). |
---|
73 | 5. There is no way of sending zero distance codes--a dummy must be |
---|
74 | sent if there are none. (History: a pre 2.0 version of PKZIP would |
---|
75 | store blocks with no distance codes, but this was discovered to be |
---|
76 | too harsh a criterion.) Valid only for 1.93a. 2.04c does allow |
---|
77 | zero distance codes, which is sent as one code of zero bits in |
---|
78 | length. |
---|
79 | 6. There are up to 286 literal/length codes. Code 256 represents the |
---|
80 | end-of-block. Note however that the static length tree defines |
---|
81 | 288 codes just to fill out the Huffman codes. Codes 286 and 287 |
---|
82 | cannot be used though, since there is no length base or extra bits |
---|
83 | defined for them. Similarly, there are up to 30 distance codes. |
---|
84 | However, static trees define 32 codes (all 5 bits) to fill out the |
---|
85 | Huffman codes, but the last two had better not show up in the data. |
---|
86 | 7. Unzip can check dynamic Huffman blocks for complete code sets. |
---|
87 | The exception is that a single code would not be complete (see #4). |
---|
88 | 8. The five bits following the block type is really the number of |
---|
89 | literal codes sent minus 257. |
---|
90 | 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits |
---|
91 | (1+6+6). Therefore, to output three times the length, you output |
---|
92 | three codes (1+1+1), whereas to output four times the same length, |
---|
93 | you only need two codes (1+3). Hmm. |
---|
94 | 10. In the tree reconstruction algorithm, Code = Code + Increment |
---|
95 | only if BitLength(i) is not zero. (Pretty obvious.) |
---|
96 | 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) |
---|
97 | 12. Note: length code 284 can represent 227-258, but length code 285 |
---|
98 | really is 258. The last length deserves its own, short code |
---|
99 | since it gets used a lot in very redundant files. The length |
---|
100 | 258 is special since 258 - 3 (the min match length) is 255. |
---|
101 | 13. The literal/length and distance code bit lengths are read as a |
---|
102 | single stream of lengths. It is possible (and advantageous) for |
---|
103 | a repeat code (16, 17, or 18) to go across the boundary between |
---|
104 | the two sets of lengths. |
---|
105 | */ |
---|
106 | |
---|
107 | #ifdef RCSID |
---|
108 | static char rcsid[] = "#Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp #"; |
---|
109 | #endif |
---|
110 | |
---|
111 | #define slide window |
---|
112 | |
---|
113 | /* Huffman code lookup table entry--this entry is four bytes for machines |
---|
114 | that have 16-bit pointers (e.g. PC's in the small or medium model). |
---|
115 | Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16 |
---|
116 | means that v is a literal, 16 < e < 32 means that v is a pointer to |
---|
117 | the next table, which codes e - 16 bits, and lastly e == 99 indicates |
---|
118 | an unused code. If a code with e == 99 is looked up, this implies an |
---|
119 | error in the data. */ |
---|
120 | struct huft { |
---|
121 | uch e; /* number of extra bits or operation */ |
---|
122 | uch b; /* number of bits in this code or subcode */ |
---|
123 | union { |
---|
124 | ush n; /* literal, length base, or distance base */ |
---|
125 | struct huft *t; /* pointer to next level of table */ |
---|
126 | } v; |
---|
127 | }; |
---|
128 | |
---|
129 | /* Function prototypes */ |
---|
130 | STATIC int huft_build OF((unsigned *, unsigned, unsigned, |
---|
131 | const ush *, const ush *, struct huft **, int *)); |
---|
132 | STATIC int huft_free OF((struct huft *)); |
---|
133 | STATIC int inflate_codes OF((struct huft *, struct huft *, int, int)); |
---|
134 | STATIC int inflate_stored OF((void)); |
---|
135 | STATIC int inflate_fixed OF((void)); |
---|
136 | STATIC int inflate_dynamic OF((void)); |
---|
137 | STATIC int inflate_block OF((int *)); |
---|
138 | STATIC int inflate OF((void)); |
---|
139 | |
---|
140 | /* The inflate algorithm uses a sliding 32 K byte window on the uncompressed |
---|
141 | stream to find repeated byte strings. This is implemented here as a |
---|
142 | circular buffer. The index is updated simply by incrementing and then |
---|
143 | ANDing with 0x7fff (32K-1). */ |
---|
144 | /* It is left to other modules to supply the 32 K area. It is assumed |
---|
145 | to be usable as if it were declared "uch slide[32768];" or as just |
---|
146 | "uch *slide;" and then malloc'ed in the latter case. The definition |
---|
147 | must be in unzip.h, included above. */ |
---|
148 | /* unsigned wp; current position in slide */ |
---|
149 | #define wp outcnt |
---|
150 | #define flush_output(w) (wp=(w),flush_window()) |
---|
151 | |
---|
152 | /* Tables for deflate from PKZIP's appnote.txt. */ |
---|
153 | static const unsigned border[] = { /* Order of the bit length code lengths */ |
---|
154 | 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 |
---|
155 | }; |
---|
156 | |
---|
157 | static const ush cplens[] = { /* Copy lengths for literal codes 257..285 */ |
---|
158 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, |
---|
159 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0 |
---|
160 | }; |
---|
161 | |
---|
162 | /* note: see note #13 above about the 258 in this list. */ |
---|
163 | static const ush cplext[] = { /* Extra bits for literal codes 257..285 */ |
---|
164 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, |
---|
165 | 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99 |
---|
166 | }; /* 99==invalid */ |
---|
167 | |
---|
168 | static const ush cpdist[] = { /* Copy offsets for distance codes 0..29 */ |
---|
169 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, |
---|
170 | 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, |
---|
171 | 8193, 12289, 16385, 24577 |
---|
172 | }; |
---|
173 | |
---|
174 | static const ush cpdext[] = { /* Extra bits for distance codes */ |
---|
175 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, |
---|
176 | 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, |
---|
177 | 12, 12, 13, 13 |
---|
178 | }; |
---|
179 | |
---|
180 | /* Macros for inflate() bit peeking and grabbing. |
---|
181 | The usage is: |
---|
182 | |
---|
183 | NEEDBITS(j) |
---|
184 | x = b & mask_bits[j]; |
---|
185 | DUMPBITS(j) |
---|
186 | |
---|
187 | where NEEDBITS makes sure that b has at least j bits in it, and |
---|
188 | DUMPBITS removes the bits from b. The macros use the variable k |
---|
189 | for the number of bits in b. Normally, b and k are register |
---|
190 | variables for speed, and are initialized at the beginning of a |
---|
191 | routine that uses these macros from a global bit buffer and count. |
---|
192 | |
---|
193 | If we assume that EOB will be the longest code, then we will never |
---|
194 | ask for bits with NEEDBITS that are beyond the end of the stream. |
---|
195 | So, NEEDBITS should not read any more bytes than are needed to |
---|
196 | meet the request. Then no bytes need to be "returned" to the buffer |
---|
197 | at the end of the last block. |
---|
198 | |
---|
199 | However, this assumption is not true for fixed blocks--the EOB code |
---|
200 | is 7 bits, but the other literal/length codes can be 8 or 9 bits. |
---|
201 | (The EOB code is shorter than other codes because fixed blocks are |
---|
202 | generally short. So, while a block always has an EOB, many other |
---|
203 | literal/length codes have a significantly lower probability of |
---|
204 | showing up at all.) However, by making the first table have a |
---|
205 | lookup of seven bits, the EOB code will be found in that first |
---|
206 | lookup, and so will not require that too many bits be pulled from |
---|
207 | the stream. |
---|
208 | */ |
---|
209 | |
---|
210 | STATIC ulg bb; /* bit buffer */ |
---|
211 | STATIC unsigned bk; /* bits in bit buffer */ |
---|
212 | |
---|
213 | STATIC const ush mask_bits[] = { |
---|
214 | 0x0000, |
---|
215 | 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, |
---|
216 | 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff |
---|
217 | }; |
---|
218 | |
---|
219 | #define NEXTBYTE() (uch)get_byte() |
---|
220 | #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}} |
---|
221 | #define DUMPBITS(n) {b>>=(n);k-=(n);} |
---|
222 | |
---|
223 | /* |
---|
224 | Huffman code decoding is performed using a multi-level table lookup. |
---|
225 | The fastest way to decode is to simply build a lookup table whose |
---|
226 | size is determined by the longest code. However, the time it takes |
---|
227 | to build this table can also be a factor if the data being decoded |
---|
228 | is not very long. The most common codes are necessarily the |
---|
229 | shortest codes, so those codes dominate the decoding time, and hence |
---|
230 | the speed. The idea is you can have a shorter table that decodes the |
---|
231 | shorter, more probable codes, and then point to subsidiary tables for |
---|
232 | the longer codes. The time it costs to decode the longer codes is |
---|
233 | then traded against the time it takes to make longer tables. |
---|
234 | |
---|
235 | This results of this trade are in the variables lbits and dbits |
---|
236 | below. lbits is the number of bits the first level table for literal/ |
---|
237 | length codes can decode in one step, and dbits is the same thing for |
---|
238 | the distance codes. Subsequent tables are also less than or equal to |
---|
239 | those sizes. These values may be adjusted either when all of the |
---|
240 | codes are shorter than that, in which case the longest code length in |
---|
241 | bits is used, or when the shortest code is *longer* than the requested |
---|
242 | table size, in which case the length of the shortest code in bits is |
---|
243 | used. |
---|
244 | |
---|
245 | There are two different values for the two tables, since they code a |
---|
246 | different number of possibilities each. The literal/length table |
---|
247 | codes 286 possible values, or in a flat code, a little over eight |
---|
248 | bits. The distance table codes 30 possible values, or a little less |
---|
249 | than five bits, flat. The optimum values for speed end up being |
---|
250 | about one bit more than those, so lbits is 8+1 and dbits is 5+1. |
---|
251 | The optimum values may differ though from machine to machine, and |
---|
252 | possibly even between compilers. Your mileage may vary. |
---|
253 | */ |
---|
254 | |
---|
255 | STATIC const int lbits = 9; /* bits in base literal/length lookup table */ |
---|
256 | STATIC const int dbits = 6; /* bits in base distance lookup table */ |
---|
257 | |
---|
258 | /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */ |
---|
259 | #define BMAX 16 /* maximum bit length of any code (16 for explode) */ |
---|
260 | #define N_MAX 288 /* maximum number of codes in any set */ |
---|
261 | |
---|
262 | STATIC unsigned hufts; /* track memory usage */ |
---|
263 | |
---|
264 | STATIC int huft_build(b, n, s, d, e, t, m) |
---|
265 | unsigned *b; /* code lengths in bits (all assumed <= BMAX) */ |
---|
266 | unsigned n; /* number of codes (assumed <= N_MAX) */ |
---|
267 | unsigned s; /* number of simple-valued codes (0..s-1) */ |
---|
268 | const ush *d; /* list of base values for non-simple codes */ |
---|
269 | const ush *e; /* list of extra bits for non-simple codes */ |
---|
270 | struct huft **t; /* result: starting table */ |
---|
271 | int *m; /* maximum lookup bits, returns actual */ |
---|
272 | /* Given a list of code lengths and a maximum table size, make a set of |
---|
273 | tables to decode that set of codes. Return zero on success, one if |
---|
274 | the given code set is incomplete (the tables are still built in this |
---|
275 | case), two if the input is invalid (all zero length codes or an |
---|
276 | oversubscribed set of lengths), and three if not enough memory. */ |
---|
277 | { |
---|
278 | unsigned a; /* counter for codes of length k */ |
---|
279 | unsigned c[BMAX + 1]; /* bit length count table */ |
---|
280 | unsigned f; /* i repeats in table every f entries */ |
---|
281 | int g; /* maximum code length */ |
---|
282 | int h; /* table level */ |
---|
283 | register unsigned i; /* counter, current code */ |
---|
284 | register unsigned j; /* counter */ |
---|
285 | register int k; /* number of bits in current code */ |
---|
286 | int l; /* bits per table (returned in m) */ |
---|
287 | register unsigned *p; /* pointer into c[], b[], or v[] */ |
---|
288 | register struct huft *q; /* points to current table */ |
---|
289 | struct huft r; /* table entry for structure assignment */ |
---|
290 | struct huft *u[BMAX]; /* table stack */ |
---|
291 | unsigned v[N_MAX]; /* values in order of bit length */ |
---|
292 | register int w; /* bits before this table == (l * h) */ |
---|
293 | unsigned x[BMAX + 1]; /* bit offsets, then code stack */ |
---|
294 | unsigned *xp; /* pointer into x */ |
---|
295 | int y; /* number of dummy codes added */ |
---|
296 | unsigned z; /* number of entries in current table */ |
---|
297 | |
---|
298 | DEBG("huft1 "); |
---|
299 | |
---|
300 | /* Generate counts for each bit length */ |
---|
301 | memzero(c, sizeof(c)); |
---|
302 | p = b; |
---|
303 | i = n; |
---|
304 | do { |
---|
305 | Tracecv(*p, |
---|
306 | (stderr, |
---|
307 | (n - i >= ' ' |
---|
308 | && n - i <= '~' ? "%c %d\n" : "0x%x %d\n"), n - i, *p)); |
---|
309 | c[*p]++; /* assume all entries <= BMAX */ |
---|
310 | p++; /* Can't combine with above line (Solaris bug) */ |
---|
311 | } while (--i); |
---|
312 | if (c[0] == n) { /* null input--all zero length codes */ |
---|
313 | *t = (struct huft *)NULL; |
---|
314 | *m = 0; |
---|
315 | return 0; |
---|
316 | } |
---|
317 | |
---|
318 | DEBG("huft2 "); |
---|
319 | |
---|
320 | /* Find minimum and maximum length, bound *m by those */ |
---|
321 | l = *m; |
---|
322 | for (j = 1; j <= BMAX; j++) |
---|
323 | if (c[j]) |
---|
324 | break; |
---|
325 | k = j; /* minimum code length */ |
---|
326 | if ((unsigned)l < j) |
---|
327 | l = j; |
---|
328 | for (i = BMAX; i; i--) |
---|
329 | if (c[i]) |
---|
330 | break; |
---|
331 | g = i; /* maximum code length */ |
---|
332 | if ((unsigned)l > i) |
---|
333 | l = i; |
---|
334 | *m = l; |
---|
335 | |
---|
336 | DEBG("huft3 "); |
---|
337 | |
---|
338 | /* Adjust last length count to fill out codes, if needed */ |
---|
339 | for (y = 1 << j; j < i; j++, y <<= 1) |
---|
340 | if ((y -= c[j]) < 0) |
---|
341 | return 2; /* bad input: more codes than bits */ |
---|
342 | if ((y -= c[i]) < 0) |
---|
343 | return 2; |
---|
344 | c[i] += y; |
---|
345 | |
---|
346 | DEBG("huft4 "); |
---|
347 | |
---|
348 | /* Generate starting offsets into the value table for each length */ |
---|
349 | x[1] = j = 0; |
---|
350 | p = c + 1; |
---|
351 | xp = x + 2; |
---|
352 | while (--i) { /* note that i == g from above */ |
---|
353 | *xp++ = (j += *p++); |
---|
354 | } |
---|
355 | |
---|
356 | DEBG("huft5 "); |
---|
357 | |
---|
358 | /* Make a table of values in order of bit lengths */ |
---|
359 | p = b; |
---|
360 | i = 0; |
---|
361 | do { |
---|
362 | if ((j = *p++) != 0) |
---|
363 | v[x[j]++] = i; |
---|
364 | } while (++i < n); |
---|
365 | |
---|
366 | DEBG("h6 "); |
---|
367 | |
---|
368 | /* Generate the Huffman codes and for each, make the table entries */ |
---|
369 | x[0] = i = 0; /* first Huffman code is zero */ |
---|
370 | p = v; /* grab values in bit order */ |
---|
371 | h = -1; /* no tables yet--level -1 */ |
---|
372 | w = -l; /* bits decoded == (l * h) */ |
---|
373 | u[0] = (struct huft *)NULL; /* just to keep compilers happy */ |
---|
374 | q = (struct huft *)NULL; /* ditto */ |
---|
375 | z = 0; /* ditto */ |
---|
376 | DEBG("h6a "); |
---|
377 | |
---|
378 | /* go through the bit lengths (k already is bits in shortest code) */ |
---|
379 | for (; k <= g; k++) { |
---|
380 | DEBG("h6b "); |
---|
381 | a = c[k]; |
---|
382 | while (a--) { |
---|
383 | DEBG("h6b1 "); |
---|
384 | /* here i is the Huffman code of length k bits for value *p */ |
---|
385 | /* make tables up to required level */ |
---|
386 | while (k > w + l) { |
---|
387 | DEBG1("1 "); |
---|
388 | h++; |
---|
389 | w += l; /* previous table always l bits */ |
---|
390 | |
---|
391 | /* compute minimum size table less than or equal to l bits */ |
---|
392 | z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */ |
---|
393 | if ((f = 1 << (j = k - w)) > a + 1) { /* try a k-w bit table *//* too few codes for k-w bit table */ |
---|
394 | DEBG1("2 "); |
---|
395 | f -= a + 1; /* deduct codes from patterns left */ |
---|
396 | xp = c + k; |
---|
397 | while (++j < z) { /* try smaller tables up to z bits */ |
---|
398 | if ((f <<= 1) <= *++xp) |
---|
399 | break; /* enough codes to use up j bits */ |
---|
400 | f -= *xp; /* else deduct codes from patterns */ |
---|
401 | } |
---|
402 | } |
---|
403 | DEBG1("3 "); |
---|
404 | z = 1 << j; /* table entries for j-bit table */ |
---|
405 | |
---|
406 | /* allocate and link in new table */ |
---|
407 | if ((q = |
---|
408 | (struct huft *)malloc((z + 1) * sizeof(struct huft))) == |
---|
409 | (struct huft *)NULL) { |
---|
410 | if (h) |
---|
411 | huft_free(u[0]); |
---|
412 | return 3; /* not enough memory */ |
---|
413 | } |
---|
414 | DEBG1("4 "); |
---|
415 | hufts += z + 1; /* track memory usage */ |
---|
416 | *t = q + 1; /* link to list for huft_free() */ |
---|
417 | *(t = &(q->v.t)) = (struct huft *)NULL; |
---|
418 | u[h] = ++q; /* table starts after link */ |
---|
419 | |
---|
420 | DEBG1("5 "); |
---|
421 | /* connect to last table, if there is one */ |
---|
422 | if (h) { |
---|
423 | x[h] = i; /* save pattern for backing up */ |
---|
424 | r.b = (uch) l; /* bits to dump before this table */ |
---|
425 | r.e = (uch) (16 + j); /* bits in this table */ |
---|
426 | r.v.t = q; /* pointer to this table */ |
---|
427 | j = i >> (w - l); /* (get around Turbo C bug) */ |
---|
428 | u[h - 1][j] = r; /* connect to last table */ |
---|
429 | } |
---|
430 | DEBG1("6 "); |
---|
431 | } |
---|
432 | DEBG("h6c "); |
---|
433 | |
---|
434 | /* set up table entry in r */ |
---|
435 | r.b = (uch) (k - w); |
---|
436 | if (p >= v + n) |
---|
437 | r.e = 99; /* out of values--invalid code */ |
---|
438 | else if (*p < s) { |
---|
439 | r.e = (uch) (*p < 256 ? 16 : 15); /* 256 is end-of-block code */ |
---|
440 | r.v.n = (ush) (*p); /* simple code is just the value */ |
---|
441 | p++; /* one compiler does not like *p++ */ |
---|
442 | } else { |
---|
443 | r.e = (uch) e[*p - s]; /* non-simple--look up in lists */ |
---|
444 | r.v.n = d[*p++ - s]; |
---|
445 | } |
---|
446 | DEBG("h6d "); |
---|
447 | |
---|
448 | /* fill code-like entries with r */ |
---|
449 | f = 1 << (k - w); |
---|
450 | for (j = i >> w; j < z; j += f) |
---|
451 | q[j] = r; |
---|
452 | |
---|
453 | /* backwards increment the k-bit code i */ |
---|
454 | for (j = 1 << (k - 1); i & j; j >>= 1) |
---|
455 | i ^= j; |
---|
456 | i ^= j; |
---|
457 | |
---|
458 | /* backup over finished tables */ |
---|
459 | while ((i & ((1 << w) - 1)) != x[h]) { |
---|
460 | h--; /* don't need to update q */ |
---|
461 | w -= l; |
---|
462 | } |
---|
463 | DEBG("h6e "); |
---|
464 | } |
---|
465 | DEBG("h6f "); |
---|
466 | } |
---|
467 | |
---|
468 | DEBG("huft7 "); |
---|
469 | |
---|
470 | /* Return true (1) if we were given an incomplete table */ |
---|
471 | return y != 0 && g != 1; |
---|
472 | } |
---|
473 | |
---|
474 | STATIC int huft_free(t) |
---|
475 | struct huft *t; /* table to free */ |
---|
476 | /* Free the malloc'ed tables built by huft_build(), which makes a linked |
---|
477 | list of the tables it made, with the links in a dummy first entry of |
---|
478 | each table. */ |
---|
479 | { |
---|
480 | register struct huft *p, *q; |
---|
481 | |
---|
482 | /* Go through linked list, freeing from the malloced (t[-1]) address. */ |
---|
483 | p = t; |
---|
484 | while (p != (struct huft *)NULL) { |
---|
485 | q = (--p)->v.t; |
---|
486 | free((char *)p); |
---|
487 | p = q; |
---|
488 | } |
---|
489 | return 0; |
---|
490 | } |
---|
491 | |
---|
492 | STATIC int inflate_codes(tl, td, bl, bd) |
---|
493 | struct huft *tl, *td; /* literal/length and distance decoder tables */ |
---|
494 | int bl, bd; /* number of bits decoded by tl[] and td[] */ |
---|
495 | /* inflate (decompress) the codes in a deflated (compressed) block. |
---|
496 | Return an error code or zero if it all goes ok. */ |
---|
497 | { |
---|
498 | register unsigned e; /* table entry flag/number of extra bits */ |
---|
499 | unsigned n, d; /* length and index for copy */ |
---|
500 | unsigned w; /* current window position */ |
---|
501 | struct huft *t; /* pointer to table entry */ |
---|
502 | unsigned ml, md; /* masks for bl and bd bits */ |
---|
503 | register ulg b; /* bit buffer */ |
---|
504 | register unsigned k; /* number of bits in bit buffer */ |
---|
505 | |
---|
506 | /* make local copies of globals */ |
---|
507 | b = bb; /* initialize bit buffer */ |
---|
508 | k = bk; |
---|
509 | w = wp; /* initialize window position */ |
---|
510 | |
---|
511 | /* inflate the coded data */ |
---|
512 | ml = mask_bits[bl]; /* precompute masks for speed */ |
---|
513 | md = mask_bits[bd]; |
---|
514 | for (;;) { /* do until end of block */ |
---|
515 | NEEDBITS((unsigned)bl) |
---|
516 | if ((e = (t = tl + ((unsigned)b & ml))->e) > 16) |
---|
517 | do { |
---|
518 | if (e == 99) |
---|
519 | return 1; |
---|
520 | DUMPBITS(t->b) |
---|
521 | e -= 16; |
---|
522 | NEEDBITS(e) |
---|
523 | } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); |
---|
524 | DUMPBITS(t->b) |
---|
525 | if (e == 16) { /* then it's a literal */ |
---|
526 | slide[w++] = (uch) t->v.n; |
---|
527 | Tracevv((stderr, "%c", slide[w - 1])); |
---|
528 | if (w == WSIZE) { |
---|
529 | flush_output(w); |
---|
530 | w = 0; |
---|
531 | } |
---|
532 | } else { /* it's an EOB or a length */ |
---|
533 | |
---|
534 | /* exit if end of block */ |
---|
535 | if (e == 15) |
---|
536 | break; |
---|
537 | |
---|
538 | /* get length of block to copy */ |
---|
539 | NEEDBITS(e) |
---|
540 | n = t->v.n + ((unsigned)b & mask_bits[e]); |
---|
541 | DUMPBITS(e); |
---|
542 | |
---|
543 | /* decode distance of block to copy */ |
---|
544 | NEEDBITS((unsigned)bd) |
---|
545 | if ((e = (t = td + ((unsigned)b & md))->e) > 16) |
---|
546 | do { |
---|
547 | if (e == 99) |
---|
548 | return 1; |
---|
549 | DUMPBITS(t->b) |
---|
550 | e -= 16; |
---|
551 | NEEDBITS(e) |
---|
552 | } while ((e = |
---|
553 | (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); |
---|
554 | DUMPBITS(t->b) |
---|
555 | NEEDBITS(e) |
---|
556 | d = w - t->v.n - ((unsigned)b & mask_bits[e]); |
---|
557 | DUMPBITS(e) |
---|
558 | Tracevv((stderr, "\\[%d,%d]", w - d, n)); |
---|
559 | |
---|
560 | /* do the copy */ |
---|
561 | do { |
---|
562 | n -= (e = |
---|
563 | (e = WSIZE - ((d &= WSIZE - 1) > w ? d : w)) > n ? n : e); |
---|
564 | #if !defined(NOMEMCPY) && !defined(DEBUG) |
---|
565 | if (w - d >= e) { /* (this test assumes unsigned comparison) */ |
---|
566 | memcpy(slide + w, slide + d, e); |
---|
567 | w += e; |
---|
568 | d += e; |
---|
569 | } else /* do it slow to avoid memcpy() overlap */ |
---|
570 | #endif /* !NOMEMCPY */ |
---|
571 | do { |
---|
572 | slide[w++] = slide[d++]; |
---|
573 | Tracevv((stderr, "%c", slide[w - 1])); |
---|
574 | } while (--e); |
---|
575 | if (w == WSIZE) { |
---|
576 | flush_output(w); |
---|
577 | w = 0; |
---|
578 | } |
---|
579 | } while (n); |
---|
580 | } |
---|
581 | } |
---|
582 | |
---|
583 | /* restore the globals from the locals */ |
---|
584 | wp = w; /* restore global window pointer */ |
---|
585 | bb = b; /* restore global bit buffer */ |
---|
586 | bk = k; |
---|
587 | |
---|
588 | /* done */ |
---|
589 | return 0; |
---|
590 | } |
---|
591 | |
---|
592 | STATIC int inflate_stored() |
---|
593 | /* "decompress" an inflated type 0 (stored) block. */ |
---|
594 | { |
---|
595 | unsigned n; /* number of bytes in block */ |
---|
596 | unsigned w; /* current window position */ |
---|
597 | register ulg b; /* bit buffer */ |
---|
598 | register unsigned k; /* number of bits in bit buffer */ |
---|
599 | |
---|
600 | DEBG("<stor"); |
---|
601 | |
---|
602 | /* make local copies of globals */ |
---|
603 | b = bb; /* initialize bit buffer */ |
---|
604 | k = bk; |
---|
605 | w = wp; /* initialize window position */ |
---|
606 | |
---|
607 | /* go to byte boundary */ |
---|
608 | n = k & 7; |
---|
609 | DUMPBITS(n); |
---|
610 | |
---|
611 | /* get the length and its complement */ |
---|
612 | NEEDBITS(16) |
---|
613 | n = ((unsigned)b & 0xffff); |
---|
614 | DUMPBITS(16) |
---|
615 | NEEDBITS(16) |
---|
616 | if (n != (unsigned)((~b) & 0xffff)) |
---|
617 | return 1; /* error in compressed data */ |
---|
618 | DUMPBITS(16) |
---|
619 | |
---|
620 | /* read and output the compressed data */ |
---|
621 | while (n--) { |
---|
622 | NEEDBITS(8) |
---|
623 | slide[w++] = (uch) b; |
---|
624 | if (w == WSIZE) { |
---|
625 | flush_output(w); |
---|
626 | w = 0; |
---|
627 | } |
---|
628 | DUMPBITS(8) |
---|
629 | } |
---|
630 | |
---|
631 | /* restore the globals from the locals */ |
---|
632 | wp = w; /* restore global window pointer */ |
---|
633 | bb = b; /* restore global bit buffer */ |
---|
634 | bk = k; |
---|
635 | |
---|
636 | DEBG(">"); |
---|
637 | return 0; |
---|
638 | } |
---|
639 | |
---|
640 | STATIC int inflate_fixed() |
---|
641 | /* decompress an inflated type 1 (fixed Huffman codes) block. We should |
---|
642 | either replace this with a custom decoder, or at least precompute the |
---|
643 | Huffman tables. */ |
---|
644 | { |
---|
645 | int i; /* temporary variable */ |
---|
646 | struct huft *tl; /* literal/length code table */ |
---|
647 | struct huft *td; /* distance code table */ |
---|
648 | int bl; /* lookup bits for tl */ |
---|
649 | int bd; /* lookup bits for td */ |
---|
650 | unsigned l[288]; /* length list for huft_build */ |
---|
651 | |
---|
652 | DEBG("<fix"); |
---|
653 | |
---|
654 | /* set up literal table */ |
---|
655 | for (i = 0; i < 144; i++) |
---|
656 | l[i] = 8; |
---|
657 | for (; i < 256; i++) |
---|
658 | l[i] = 9; |
---|
659 | for (; i < 280; i++) |
---|
660 | l[i] = 7; |
---|
661 | for (; i < 288; i++) /* make a complete, but wrong code set */ |
---|
662 | l[i] = 8; |
---|
663 | bl = 7; |
---|
664 | if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0) |
---|
665 | return i; |
---|
666 | |
---|
667 | /* set up distance table */ |
---|
668 | for (i = 0; i < 30; i++) /* make an incomplete code set */ |
---|
669 | l[i] = 5; |
---|
670 | bd = 5; |
---|
671 | if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1) { |
---|
672 | huft_free(tl); |
---|
673 | |
---|
674 | DEBG(">"); |
---|
675 | return i; |
---|
676 | } |
---|
677 | |
---|
678 | /* decompress until an end-of-block code */ |
---|
679 | if (inflate_codes(tl, td, bl, bd)) |
---|
680 | return 1; |
---|
681 | |
---|
682 | /* free the decoding tables, return */ |
---|
683 | huft_free(tl); |
---|
684 | huft_free(td); |
---|
685 | return 0; |
---|
686 | } |
---|
687 | |
---|
688 | STATIC int inflate_dynamic() |
---|
689 | /* decompress an inflated type 2 (dynamic Huffman codes) block. */ |
---|
690 | { |
---|
691 | int i; /* temporary variables */ |
---|
692 | unsigned j; |
---|
693 | unsigned l; /* last length */ |
---|
694 | unsigned m; /* mask for bit lengths table */ |
---|
695 | unsigned n; /* number of lengths to get */ |
---|
696 | struct huft *tl; /* literal/length code table */ |
---|
697 | struct huft *td; /* distance code table */ |
---|
698 | int bl; /* lookup bits for tl */ |
---|
699 | int bd; /* lookup bits for td */ |
---|
700 | unsigned nb; /* number of bit length codes */ |
---|
701 | unsigned nl; /* number of literal/length codes */ |
---|
702 | unsigned nd; /* number of distance codes */ |
---|
703 | #ifdef PKZIP_BUG_WORKAROUND |
---|
704 | unsigned ll[288 + 32]; /* literal/length and distance code lengths */ |
---|
705 | #else |
---|
706 | unsigned ll[286 + 30]; /* literal/length and distance code lengths */ |
---|
707 | #endif |
---|
708 | register ulg b; /* bit buffer */ |
---|
709 | register unsigned k; /* number of bits in bit buffer */ |
---|
710 | |
---|
711 | DEBG("<dyn"); |
---|
712 | |
---|
713 | /* make local bit buffer */ |
---|
714 | b = bb; |
---|
715 | k = bk; |
---|
716 | |
---|
717 | /* read in table lengths */ |
---|
718 | NEEDBITS(5) |
---|
719 | nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */ |
---|
720 | DUMPBITS(5) |
---|
721 | NEEDBITS(5) |
---|
722 | nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */ |
---|
723 | DUMPBITS(5) |
---|
724 | NEEDBITS(4) |
---|
725 | nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */ |
---|
726 | DUMPBITS(4) |
---|
727 | #ifdef PKZIP_BUG_WORKAROUND |
---|
728 | if (nl > 288 || nd > 32) |
---|
729 | #else |
---|
730 | if (nl > 286 || nd > 30) |
---|
731 | #endif |
---|
732 | return 1; /* bad lengths */ |
---|
733 | |
---|
734 | DEBG("dyn1 "); |
---|
735 | |
---|
736 | /* read in bit-length-code lengths */ |
---|
737 | for (j = 0; j < nb; j++) { |
---|
738 | NEEDBITS(3) |
---|
739 | ll[border[j]] = (unsigned)b & 7; |
---|
740 | DUMPBITS(3) |
---|
741 | } |
---|
742 | for (; j < 19; j++) |
---|
743 | ll[border[j]] = 0; |
---|
744 | |
---|
745 | DEBG("dyn2 "); |
---|
746 | |
---|
747 | /* build decoding table for trees--single level, 7 bit lookup */ |
---|
748 | bl = 7; |
---|
749 | if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) { |
---|
750 | if (i == 1) |
---|
751 | huft_free(tl); |
---|
752 | return i; /* incomplete code set */ |
---|
753 | } |
---|
754 | |
---|
755 | DEBG("dyn3 "); |
---|
756 | |
---|
757 | /* read in literal and distance code lengths */ |
---|
758 | n = nl + nd; |
---|
759 | m = mask_bits[bl]; |
---|
760 | i = l = 0; |
---|
761 | while ((unsigned)i < n) { |
---|
762 | NEEDBITS((unsigned)bl) |
---|
763 | j = (td = tl + ((unsigned)b & m))->b; |
---|
764 | DUMPBITS(j) |
---|
765 | j = td->v.n; |
---|
766 | if (j < 16) /* length of code in bits (0..15) */ |
---|
767 | ll[i++] = l = j; /* save last length in l */ |
---|
768 | else if (j == 16) { /* repeat last length 3 to 6 times */ |
---|
769 | NEEDBITS(2) |
---|
770 | j = 3 + ((unsigned)b & 3); |
---|
771 | DUMPBITS(2) |
---|
772 | if ((unsigned)i + j > n) |
---|
773 | return 1; |
---|
774 | while (j--) |
---|
775 | ll[i++] = l; |
---|
776 | } else if (j == 17) { /* 3 to 10 zero length codes */ |
---|
777 | NEEDBITS(3) |
---|
778 | j = 3 + ((unsigned)b & 7); |
---|
779 | DUMPBITS(3) |
---|
780 | if ((unsigned)i + j > n) |
---|
781 | return 1; |
---|
782 | while (j--) |
---|
783 | ll[i++] = 0; |
---|
784 | l = 0; |
---|
785 | } else { /* j == 18: 11 to 138 zero length codes */ |
---|
786 | |
---|
787 | NEEDBITS(7) |
---|
788 | j = 11 + ((unsigned)b & 0x7f); |
---|
789 | DUMPBITS(7) |
---|
790 | if ((unsigned)i + j > n) |
---|
791 | return 1; |
---|
792 | while (j--) |
---|
793 | ll[i++] = 0; |
---|
794 | l = 0; |
---|
795 | } |
---|
796 | } |
---|
797 | |
---|
798 | DEBG("dyn4 "); |
---|
799 | |
---|
800 | /* free decoding table for trees */ |
---|
801 | huft_free(tl); |
---|
802 | |
---|
803 | DEBG("dyn5 "); |
---|
804 | |
---|
805 | /* restore the global bit buffer */ |
---|
806 | bb = b; |
---|
807 | bk = k; |
---|
808 | |
---|
809 | DEBG("dyn5a "); |
---|
810 | |
---|
811 | /* build the decoding tables for literal/length and distance codes */ |
---|
812 | bl = lbits; |
---|
813 | if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0) { |
---|
814 | DEBG("dyn5b "); |
---|
815 | if (i == 1) { |
---|
816 | error(" incomplete literal tree"); |
---|
817 | huft_free(tl); |
---|
818 | } |
---|
819 | return i; /* incomplete code set */ |
---|
820 | } |
---|
821 | DEBG("dyn5c "); |
---|
822 | bd = dbits; |
---|
823 | if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0) { |
---|
824 | DEBG("dyn5d "); |
---|
825 | if (i == 1) { |
---|
826 | error(" incomplete distance tree"); |
---|
827 | #ifdef PKZIP_BUG_WORKAROUND |
---|
828 | i = 0; |
---|
829 | } |
---|
830 | #else |
---|
831 | huft_free(td); |
---|
832 | } |
---|
833 | huft_free(tl); |
---|
834 | return i; /* incomplete code set */ |
---|
835 | #endif |
---|
836 | } |
---|
837 | |
---|
838 | DEBG("dyn6 "); |
---|
839 | |
---|
840 | /* decompress until an end-of-block code */ |
---|
841 | if (inflate_codes(tl, td, bl, bd)) |
---|
842 | return 1; |
---|
843 | |
---|
844 | DEBG("dyn7 "); |
---|
845 | |
---|
846 | /* free the decoding tables, return */ |
---|
847 | huft_free(tl); |
---|
848 | huft_free(td); |
---|
849 | |
---|
850 | DEBG(">"); |
---|
851 | return 0; |
---|
852 | } |
---|
853 | |
---|
854 | STATIC int inflate_block(e) |
---|
855 | int *e; /* last block flag */ |
---|
856 | /* decompress an inflated block */ |
---|
857 | { |
---|
858 | unsigned t; /* block type */ |
---|
859 | register ulg b; /* bit buffer */ |
---|
860 | register unsigned k; /* number of bits in bit buffer */ |
---|
861 | |
---|
862 | DEBG("<blk"); |
---|
863 | |
---|
864 | /* make local bit buffer */ |
---|
865 | b = bb; |
---|
866 | k = bk; |
---|
867 | |
---|
868 | /* read in last block bit */ |
---|
869 | NEEDBITS(1) |
---|
870 | * e = (int)b & 1; |
---|
871 | DUMPBITS(1) |
---|
872 | |
---|
873 | /* read in block type */ |
---|
874 | NEEDBITS(2) |
---|
875 | t = (unsigned)b & 3; |
---|
876 | DUMPBITS(2) |
---|
877 | |
---|
878 | /* restore the global bit buffer */ |
---|
879 | bb = b; |
---|
880 | bk = k; |
---|
881 | |
---|
882 | /* inflate that block type */ |
---|
883 | if (t == 2) |
---|
884 | return inflate_dynamic(); |
---|
885 | if (t == 0) |
---|
886 | return inflate_stored(); |
---|
887 | if (t == 1) |
---|
888 | return inflate_fixed(); |
---|
889 | |
---|
890 | DEBG(">"); |
---|
891 | |
---|
892 | /* bad block type */ |
---|
893 | return 2; |
---|
894 | } |
---|
895 | |
---|
896 | STATIC int inflate() |
---|
897 | /* decompress an inflated entry */ |
---|
898 | { |
---|
899 | int e; /* last block flag */ |
---|
900 | int r; /* result code */ |
---|
901 | unsigned h; /* maximum struct huft's malloc'ed */ |
---|
902 | void *ptr; |
---|
903 | |
---|
904 | /* initialize window, bit buffer */ |
---|
905 | wp = 0; |
---|
906 | bk = 0; |
---|
907 | bb = 0; |
---|
908 | |
---|
909 | /* decompress until the last block */ |
---|
910 | h = 0; |
---|
911 | do { |
---|
912 | hufts = 0; |
---|
913 | gzip_mark(&ptr); |
---|
914 | if ((r = inflate_block(&e)) != 0) { |
---|
915 | gzip_release(&ptr); |
---|
916 | return r; |
---|
917 | } |
---|
918 | gzip_release(&ptr); |
---|
919 | if (hufts > h) |
---|
920 | h = hufts; |
---|
921 | } while (!e); |
---|
922 | |
---|
923 | /* Undo too much lookahead. The next read will be byte aligned so we |
---|
924 | * can discard unused bits in the last meaningful byte. |
---|
925 | */ |
---|
926 | while (bk >= 8) { |
---|
927 | bk -= 8; |
---|
928 | unget_byte(); |
---|
929 | } |
---|
930 | |
---|
931 | /* flush out slide */ |
---|
932 | flush_output(wp); |
---|
933 | |
---|
934 | /* return success */ |
---|
935 | #ifdef DEBUG |
---|
936 | fprintf(stderr, "<%u> ", h); |
---|
937 | #endif /* DEBUG */ |
---|
938 | return 0; |
---|
939 | } |
---|
940 | |
---|
941 | /********************************************************************** |
---|
942 | * |
---|
943 | * The following are support routines for inflate.c |
---|
944 | * |
---|
945 | **********************************************************************/ |
---|
946 | |
---|
947 | static ulg crc_32_tab[256]; |
---|
948 | static ulg crc; /* initialized in makecrc() so it'll reside in bss */ |
---|
949 | #define CRC_VALUE (crc ^ 0xffffffffL) |
---|
950 | |
---|
951 | /* |
---|
952 | * Code to compute the CRC-32 table. Borrowed from |
---|
953 | * gzip-1.0.3/makecrc.c. |
---|
954 | */ |
---|
955 | |
---|
956 | static void makecrc(void) |
---|
957 | { |
---|
958 | /* Not copyrighted 1990 Mark Adler */ |
---|
959 | |
---|
960 | unsigned long c; /* crc shift register */ |
---|
961 | unsigned long e; /* polynomial exclusive-or pattern */ |
---|
962 | int i; /* counter for all possible eight bit values */ |
---|
963 | int k; /* byte being shifted into crc apparatus */ |
---|
964 | |
---|
965 | /* terms of polynomial defining this crc (except x^32): */ |
---|
966 | static const int p[] = { 0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26 }; |
---|
967 | |
---|
968 | /* Make exclusive-or pattern from polynomial */ |
---|
969 | e = 0; |
---|
970 | for (i = 0; i < sizeof(p) / sizeof(int); i++) |
---|
971 | e |= 1L << (31 - p[i]); |
---|
972 | |
---|
973 | crc_32_tab[0] = 0; |
---|
974 | |
---|
975 | for (i = 1; i < 256; i++) { |
---|
976 | c = 0; |
---|
977 | for (k = i | 256; k != 1; k >>= 1) { |
---|
978 | c = c & 1 ? (c >> 1) ^ e : c >> 1; |
---|
979 | if (k & 1) |
---|
980 | c ^= e; |
---|
981 | } |
---|
982 | crc_32_tab[i] = c; |
---|
983 | } |
---|
984 | |
---|
985 | /* this is initialized here so this code could reside in ROM */ |
---|
986 | crc = (ulg) 0xffffffffL; /* shift register contents */ |
---|
987 | } |
---|
988 | |
---|
989 | /* gzip flag byte */ |
---|
990 | #define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */ |
---|
991 | #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */ |
---|
992 | #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */ |
---|
993 | #define ORIG_NAME 0x08 /* bit 3 set: original file name present */ |
---|
994 | #define COMMENT 0x10 /* bit 4 set: file comment present */ |
---|
995 | #define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */ |
---|
996 | #define RESERVED 0xC0 /* bit 6,7: reserved */ |
---|
997 | |
---|
998 | /* |
---|
999 | * Do the uncompression! |
---|
1000 | */ |
---|
1001 | int gunzip(void) |
---|
1002 | { |
---|
1003 | int res; |
---|
1004 | |
---|
1005 | /* Decompress */ |
---|
1006 | if ((res = inflate())) { |
---|
1007 | switch (res) { |
---|
1008 | case 0: |
---|
1009 | break; |
---|
1010 | case 1: |
---|
1011 | error("invalid compressed format (err=1)"); |
---|
1012 | break; |
---|
1013 | case 2: |
---|
1014 | error("invalid compressed format (err=2)"); |
---|
1015 | break; |
---|
1016 | case 3: |
---|
1017 | error("out of memory"); |
---|
1018 | break; |
---|
1019 | default: |
---|
1020 | error("invalid compressed format (other)"); |
---|
1021 | } |
---|
1022 | return -1; |
---|
1023 | } |
---|
1024 | |
---|
1025 | return 0; |
---|
1026 | } |
---|